
This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 1

MOMENTUM-M401

User Manual
13/11/2024

Unleash your creativity, the future is yours to build.

Table of Contents
Introduction .. 9

Description .. 9
Features .. 10

Microcontroller .. 10
Memories .. 10
Pins ... 10
Peripherals .. 10
Communication ... 10
Debug port ... 10
Power .. 10
User Interface .. 10

Pinout diagram .. 12
Operating conditions .. 13
Flash MicroPython Firmware .. 14

Installing STM32CubeProgrammer .. 14
Download the STM32CubeProgrammer ... 14
Install the Software .. 14
Verify Installation ... 14

Preparing the MOMENTUM-M401 .. 15
Connect the USB Cable .. 15
Enter Bootloader Mode ... 15

Flashing the Firmware .. 15
Testing the Firmware .. 18

Using MicroPython ... 20
What is MicroPython ? .. 20
Installing tools ... 20
Let's start .. 21
Indentation in Python ... 22

What is indentation ? .. 22
Why do we need indentation ?... 22

Adding comments in Python ... 23
Single-line comments ... 23
Multi-line comments .. 23

Understanding variables ... 24
What is a variable ? .. 24
How to create a variable ? ... 24

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 3

Naming variables ... 24
Changing the value of a variable .. 24
Types of data stored in variables ... 25
Reassigning variables ... 25
Casting .. 25
Get the type ... 26
Scope of a variable ... 27
Conclusion .. 28

Strings ... 29
Examples ... 29
When to use single or double quotes ... 29
Key takeaways ... 29
Multiline string assignment ... 30
Key points to remember .. 30

Booleans ... 31
Examples ... 31
Summary ... 33

Operators .. 34
Types of Python Operators .. 34
Examples ... 34
Summary ... 36

Lists .. 37
Overview ... 37
Key Features of Lists... 37
Creating Lists ... 37
Using the List Constructor .. 37
Accessing List Elements ... 37
Modifying Lists ... 38
Iterating Over Lists ... 38
Common List Methods ... 38
Use Cases ... 39

Tuples ... 40
Overview ... 40
Key Features of Tuples .. 40
Creating Tuples .. 40
Without Parentheses .. 40
Accessing Tuple Elements .. 40
Tuple Operations ... 41

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 4

Immutable Nature of Tuples ... 41
Common Tuple Methods .. 41
Use Cases ... 41

Python Sets ... 42
Overview ... 42
Key features of sets .. 42
Creating sets ... 42
Using the set() constructor ... 42
Accessing Set Elements ... 42
Modifying Sets ... 42
Set Operations ... 43
Common Set Methods .. 43
Use Cases ... 44

Python Dictionaries .. 45
Overview ... 45
Key features of dictionaries ... 45
Creating dictionaries .. 45
Using the dict() constructor .. 45
Syntax of the dict() constructor ... 45
Accessing dictionary elements.. 45
Modifying Dictionaries .. 46
Dictionary Methods .. 46
Iterating Through a Dictionary ... 46
Use Cases ... 47

If..else Statements ... 48
Introduction ... 48
The if statement ... 48
The else statement ... 48
The elif statement .. 48
Nested Conditions ... 49
Comparison Operators ... 50
Logical Operators ... 50
Conclusion .. 50

The pass statement .. 52
Another Example with Future Code ... 52
Conclusion .. 52

While Loops in Python .. 53
Introduction ... 53

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 5

The syntax of a while loop ... 53
Infinite Loops ... 53
The else Clause in a while Loop ... 54
Controlling the flow with break, continue, and pass ... 55
Nested while Loops ... 56
Conclusion .. 56

The for Loop in Python .. 57
Introduction ... 57
The Syntax of a for Loop .. 57
The range() Function ... 57
Iterating Over Strings .. 58
Iterating Over Dictionaries .. 58
Nested for Loops .. 59
The else Clause in a for Loop .. 59
The continue Statement ... 60
Conclusion .. 60

Functions in Python.. 62
Introduction ... 62
Defining a Function .. 62
Functions with Parameters ... 63
Returning Values from Functions .. 63
Default Parameters .. 64
Keyword Arguments ... 64
Variable Scope in Functions .. 64
Variable-Length Arguments .. 65
Recursive Functions ... 65
Conclusion .. 66

Lambda Functions ... 67
Introduction ... 67
Syntax of Lambda Functions ... 67
Lambda Functions with Multiple Arguments .. 67
Using Lambda Functions with Built-in Functions .. 67
Lambda Functions for Simple Operations .. 68
Advantages of Lambda Functions ... 68
Limitations of Lambda Functions .. 69
When to Use Lambda Functions .. 69
Conclusion .. 69

Arrays in Python ... 70

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 6

Creating a List .. 70
Loops with Lists ... 70
Manipulating Lists .. 71
Practical Example: Manipulating a List of LEDs .. 72
Conclusion .. 72

Classes and Objects in Python.. 73
Methods .. 73
self .. 73
The Special Method __str__() ... 73
Deleting a Method with del .. 74
Deleting an Object with del ... 74
Example without __del__ in MicroPython ... 74
Key Takeaways for MicroPython .. 74

Understanding Inheritance in Python... 75
What is Inheritance?... 75
Syntax of Inheritance .. 75
Basic Inheritance ... 75
Using super() to Extend Parent Behavior .. 75
Inheritance in MicroPython ... 76
Key Points About Inheritance .. 76
Summary ... 77

Understanding Iterators in Python ... 78
What is an Iterator? .. 78
Built-in Iterators ... 78
Creating a Custom Iterator ... 78
Infinite Iterators ... 79
Iterators in MicroPython ... 79
Key Points About Iterators ... 80
Summary ... 80

Understanding Polymorphism in Python .. 81
What is Polymorphism? .. 81
Polymorphism with Method Overriding in Inheritance ... 81
Polymorphism in Functions .. 81
Polymorphism in MicroPython with Inheritance .. 82
Duck Typing in Python... 83
Key Benefits of Polymorphism ... 83
Summary ... 83

Modules in Python.. 84

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 7

Why Use Modules? ... 84
Using a Module .. 84
Creating Your Own Module ... 84
MicroPython Modules ... 84
Custom MicroPython Module .. 85
Managing Module Imports .. 85
Key Benefits of Using Modules .. 85
Summary ... 85

Using the math Module .. 86
Why Use the math Module? .. 86
Key Features of the math Module .. 86
Application Example in MicroPython ... 87
Limitations in MicroPython ... 87
Summary ... 87

Handling Exceptions .. 88
What is an Exception? .. 88
Basic Exception Handling Structure .. 88
Common Exceptions in MicroPython on a Pyboard ... 88
Raising Custom Exceptions .. 89
Best Practices .. 89
Complete Example ... 89
Conclusion .. 89

Using input() .. 90
What is the input() Function? .. 90
Basic Usage of input() ... 90
Converting User Input ... 90
Using input() for Menu Systems ... 91
Limitations of input() in MicroPython ... 91
Alternatives to input() ... 91
Practical Example: Combining input() and GPIO Control ... 92
Best Practices for Using input() ... 92
Conclusion .. 92

File Manipulation in MicroPython .. 93
The Filesystem in MicroPython .. 93
Opening and Closing Files .. 93
Writing to a File .. 93
Reading from a File ... 94
Appending to a File ... 94

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 8

Checking if a File Exists .. 94
Deleting or Renaming Files ... 94
Working with Directories ... 95
Binary File Operations .. 95
Handling File Errors .. 95
Practical Example: Logging Data to a File ... 96
Best Practices for File Manipulation .. 96
Conclusion .. 96

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 9

Introduction
Description
The MOMENTUM-M401 board is a versatile and high-performance development platform built around the
STM32G474RET6 microcontroller. This microcontroller features a 170 MHz ARM Cortex-M4F core, offering
ideal processing power for applications requiring high performance and low power consumption.
Compatible with the Arduino ecosystem, it simplifies prototyping and integration with standard shields and
peripherals.

Preloaded with MicroPython, the MOMENTUM-M401 enables fast and intuitive development with an
accessible and widely adopted programming language. It offers rich connectivity options with UART, SPI,
I2C, CAN interfaces, as well as advanced features like PWM capture, ADC/DAC conversion, and motor
control.

With its compact dimensions, optimized pinout, and compatibility with a wide range of sensors and
actuators, the MOMENTUM-M401 is suited for both technology enthusiasts and professionals seeking a
robust and flexible solution for IoT, automation, or robotics projects.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 10

Features

Microcontroller
• STM32G474RET6 : 170 MHz ARM Cortex-M4F core
• Operating voltage : 3.3 V
• Mathematical hardware accelerators

o CORDIC for trigonometric functions acceleration
o FMAC (Filter Mathematical Accelerator)

• True random number generator (RNG)
• CRC calculation unit, 96-bit unique ID

Memories
• 512 kB Flash memory
• 128 kB SRAM

Pins
• 14 x Digital pins (GPIO): D0-D13
• 6 x Analog input pins (ADC): A0-A5
• 3 x Analog output pins (DAC): D10, D12, D13
• 12 x PWM pins: D0-D7, D9-D12
• For more details, refer to the pinout diagram.

Peripherals
• Calendar Real-Time Clock (RTC) with alarm
• Up to 12bits ADC
• Up to 12bits DAC
• 17 timers

Communication
• USB 2.0 full-speed: USB Type-C connector
• 3 x I2C buses
• 1 x SPI bus
• 1 x FDCAN (TX, RX, requires an external transceiver)
• 1 x UART (TX, RX, CTS, RTS)
• For more details, refer to the pinout diagram.

Debug port
• STLINKV3 (14-pin connector)
• JTAG/SWD (4-pin interface)
• Additional Serial Port (VCP)
• Hardware Reset
• Probe detection by the microcontroller

Power
• Power via USB-C® (5V, 500mA max)
• Input voltage range (from VIN or Barrel jack): 6 to 28V

User Interface
• 1 x User button (BP1), Pressing the button at startup initiates ST DFU (Device Firmware Upgrade)
• RGB LED (RLD1, GLD1, BLD1), each color can be individually dimmed for custom brightness

control.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 11

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 12

Pinout diagram

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 13

Operating conditions
Symbol Description Min Typ. Max Unit

EXT_PWR Input voltage from VIN pad / DC jack (5W max.) 6 9 28 V

VBUS Input voltage from USB connector (2.5W max.) 4.8 5 5.5 V

IOREF I/O voltage level 3.25 3.3 3.35 V

3.3V Digital operating voltage (MCU + I/O) 3.25 3.3 3.35 V

 (3.3V) Output current 500 mA

5V Output voltage 4.8 5 5.2 V

 (5V) Output current from VIN 1 A

 (5V) Output current from VBUS 500 mA

TA Ambient temperature -40 25 85 °C

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 14

Flash MicroPython Firmware
Flashing the MicroPython firmware on the MOMENTUM-M401 is a straightforward process. Follow these
step-by-step instructions to prepare your board and load the firmware using STM32CubeProgrammer.

Installing STM32CubeProgrammer
To flash firmware onto the MOMENTUM-M401, you need to install the STM32CubeProgrammer tool
provided by STMicroelectronics. Here’s how:

Download the STM32CubeProgrammer
• Visit the official STMicroelectronics website: https://www.st.com

• Search for STM32CubeProgrammer in the tools section and download the version compatible
with your operating system (Windows, macOS, or Linux).

Install the Software
• Follow the on-screen instructions provided by the installer.
• Ensure you have the necessary permissions and prerequisites (e.g., Java Runtime Environment).

Verify Installation
• Launch STM32CubeProgrammer to ensure it was installed correctly.
• You should see the interface with options to connect to a device, load firmware, and program it.

https://www.st.com/

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 15

Preparing the MOMENTUM-M401
Before flashing, you must prepare your MOMENTUM-M401 board.

Connect the USB Cable
Use a USB-C cable to connect the MOMENTUM-M401 to your computer.

Enter Bootloader Mode
1. Press and hold the PROG button on the board.

2. While holding the PROG button, press and release the RESET button.

3. Release the PROG button. The board is now in bootloader mode and ready to receive the
firmware.

Flashing the Firmware
1. Download the zip file containing the MicroPython firmware binaries for the MOMENTUM-M401

from https://leming.fr/fr/microcontroleurs/

2. Launch STM32CubeProgrammer
Open the STM32CubeProgrammer tool on your computer

3. Connect to the Board:

• In STM32CubeProgrammer, select the USB connection option.

• Click on refresh button

https://leming.fr/fr/microcontroleurs/

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 16

• Click the Connect button to establish a connection with the MOMENTUM-M401.

4. Load the Firmware:

• Navigate to the Erasing & Programming tab.

• Click on the Browse button and select the downloaded .hex file.

5. Flash the Firmware:

• Click the Start Programming button to begin flashing.

• Wait for the process to complete. A progress bar will indicate the status.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 17

6. Verify Success:

• After programming is complete, check the log in STM32CubeProgrammer for
confirmation of success.

• Disconnect the board and restart it.

• A new USB drive should appear on your computer.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 18

Testing the Firmware
After flashing, the MOMENTUM-M401 should boot with the new MicroPython firmware.

1. Open the Thonny IDE:

a. Download and install Thonny from https://thonny.org if you don’t already have it installed.

b. Launch Thonny on your computer.

2. Select the MicroPython Interpreter:

a. Go to Tools > Options > Interpreter.

b. Select MicroPython (generic) as the interpreter.

c. Choose the appropriate COM port for the MOMENTUM-M401,
or select <Try to detect port automatically>

https://thonny.org/

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 19

3. Test the REPL:

a. Click the Stop/Restart button in Thonny to connect to the board.

b. You should see the MicroPython REPL prompt “>>>” appear in the shell.

Congratulations! Your MOMENTUM-M401 is now running MicroPython and ready for development.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 20

Using MicroPython
The MOMENTUM board is fully compatible with MicroPython, allowing you to program the board easily and
quickly using an interpreted language. This chapter will guide you through the initial setup, running your first
scripts and utilizing the main features of the board.

What is MicroPython ?
MicroPython is a lightweight implementation of the Python programming language designed for
microcontrollers. With MicroPython, you can:

• Directly control GPIO pins.
• Communicate with sensors and peripherals via I2C, SPI, UART or CAN.
• Rapidly prototype IoT, home automation and other projects.

The MOMENTUM-M401 comes preloaded with MicroPython, enabling you to get started immediately.

Installing tools
Step 1 - Download and install a MicroPython-compatible IDE:

• Thonny IDE (built-in support for MicroPython), download here: https://thonny.org

Step 2 – Connect the MOMENTUM board to your computer:
• Plug in the board via USB
• The board should be automatically detected as a serial (COM) port.

Step 3 – Access the REPL (Read-Eval-Print-Loop):
• Launch Thonny IDE.
• In the Tools > Options > Interpreter, select MicroPython (Generic) as the interpreter.
• Choose Try to detect port automatically in the Port field, or choose the serial port

corresponding to your board (usually COMx on Windows or /dev/ttyUSBx on Linux/macOS).

https://thonny.org/

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 21

Let's start
Open Thonny IDE and connect to your board.

TODO add some visual

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 22

Indentation in Python

What is indentation ?
In Python, indentation means adding spaces at the beginning of a line. It is used to show which lines of code
belong together. Unlike other programming languages that use braces ({ }) to define code blocks, Python
uses indentation.

Python is designed for readability and simplicity. Proper indentation ensures that the code is both easy to
read and executable.

Why do we need indentation ?
Indentation is used to organize your code into blocks. Blocks are groups of lines that work together, like:

• Code inside an if statement
• Code inside a loop (e.g., for or while)
• Code inside a function

Correct indentations
if 7 > 3:
 print("7 is greater than 3") # This line is indented
 print("This is part of the same block") # Same block

Incorrect indentations
if 7 > 3:
print("7 is greater than 3") # Error: No indentation

In the following example, the indentation is technically correct, but consistency is not maintained. The first
block uses 2 spaces for indentation, while the second block uses 4 spaces. This inconsistency can lead to
confusion and errors, especially in larger projects.

if 7 > 3:
 print("7 is greater than 3") # This line is indented
if 5 < 20:
 print("5 is lower than 20") # This line is indented

Rule Regarding Indentation:

• Python relies on consistent indentation to define blocks of code. It is crucial to use the same
number of spaces for all indented lines in a block.

• PEP 8, the official style guide for Python, recommends using 4 spaces per indentation level. Mixing
different numbers of spaces or tabs can result in errors and make your code harder to read. Stick
to one indentation style throughout your code.

example in a loop
for i in range(3):
 print("Iteration:", i) # Indented inside the loop
print("Loop finished") # Not part of the loop

example in a function
def greet(name):
 print(f"Hello, {name}!") # Indented inside the function

greet("Léa") # Calls the function

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 23

Adding comments in Python
In Python, comments are lines in the code that the interpreter ignores. They are used to add explanations,
notes, or reminders for yourself or others reading the code. Comments improve readability and help clarify
complex or important sections.

Single-line comments
A single-line comment starts with the # symbol. Anything written after # on the same line is ignored by the
interpreter.
This line displays a welcome message
print("Welcome to our program!")
print("Welcome to our program!") # This is also a single-line comment

Multi-line comments
Python doesn't have a dedicated syntax for multi-line comments, but you can use multiple single-line
comments or enclose text in triple quotes (""").

Using multiple single-line comments
This is a comment
written across
several lines
print("Welcome to our program!")

Using triple quotes
"""
This is a comment
written across
several lines
"""
print("Welcome to our program!")

Keep in mind that while triple quotes can be used as comments, they are technically treated as multi-line
strings that aren't assigned to a variable. This means they won't affect your program's execution but might
not be ideal for all commenting scenarios.

By using comments effectively, you can make your code easier to understand and maintain, especially
when working with others or revisiting your project later.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 24

Understanding variables
In Python, a variable is like a container that holds data. You can use variables to store information that you
might need to work with later in your program. A variable is given a name, and you can assign different values
to it during the execution of your code.

What is a variable ?
A variable is a name that refers to a value stored in the computer's memory. You can think of a variable like
a label or a box where you store something.

age = 15
name = "Leny"

In this example, we have two variables: age and name. The variable age holds the number 15, and the
variable name holds the string "Leny".

How to create a variable ?
To create a variable, you simply choose a name and use the assignment operator (=) to store a value in it.
The syntax is:

variable_name = value

• The variable name is the label or identifier you give to the variable.
• The value is the data that the variable will hold.

Naming variables
When naming variables, you need to follow a few rules:

1. A variable name must begin with a letter (a-z, A-Z) or an underscore (_).
2. The rest of the name can include letters, numbers (0-9), or underscores.
3. You cannot use Python keywords (like if, else, print) as variable names.
4. Variable names are case-sensitive, meaning age and Age are two different variables.

my_age = 30
your_age = 25
print(my_age) # This will print 30

Changing the value of a variable
You can change the value stored in a variable at any time. Just assign a new value to the variable:

age = 30
print(age) # This will print 30

age = 35 # Change the value of age
print(age) # This will print 35

In this example, the value of age changes from 30 to 35.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 25

Types of data stored in variables
Python allows you to store different types of data in variables, including:

• Numbers: Whole numbers (int) or decimal numbers (float).
• Strings: Text, enclosed in quotation marks (" " or ' ').
• Booleans: True or False.
• Lists: Ordered collections of items.
• Dictionaries: Collections of key-value pairs.

examples
age = 25 # Integer
height = 5.8 # Float
name = "Pixel" # String
is_student = True # Boolean

Reassigning variables
Once you create a variable, you can change its value as many times as needed.

x = 10
print(x) # Prints 10

x = 20
print(x) # Prints 20

You can also use variables to perform arithmetic operations. For instance:

x = 10
y = 5
sum = x + y # Adding x and y
print(sum) # Prints 15

In this example, the variable sum stores the result of adding x and y.

Casting
In Python, casting refers to the process of converting one data type into another. This is often necessary
when you want to perform operations between different types, such as adding a string and a number, or
when you need to work with specific data formats. Python provides several built-in functions for casting:

int(): Converts a value to an integer (if possible)
x = "10"
y = int(x) # Converts the string "10" into the integer 10

float(): Converts a value to a floating-point number
x = "3.14"
y = float(x) # Converts the string "3.14" into the float 3.14

str(): Converts a value to a string
x = 25
y = str(x) # Converts the integer 25 into the string "25"

bool(): Converts a value to a boolean (True or False)
x = 0
y = bool(x) # Converts 0 into False

Any non-zero number or non-empty string is considered True, while zero and None are considered False.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 26

Here is a simple example demonstrating multiple types of casting
x = str(7) # x will be ‘7’
y = int(7) # y will be 7
z = float(7) # z will be 7.0

Casting is useful when you need to ensure that data types match for operations or when handling user input.
However, it's important to be cautious of errors, especially when attempting to cast incompatible types,
such as trying to convert a non-numeric string to an integer.

Get the type
In Python, it's often important to know the type of a variable or value to ensure you are working with the
correct data type for your operations. The built-in function type() is used to retrieve the type of an object.

Explanation

The type() function returns the type of the object passed to it. This can help you verify whether the value
stored in a variable is of the expected type, and can be especially useful when working with dynamic data
or user input.

Examples

Check the type of an integer
x = 10
print(type(x)) # Output: <class 'int'>

Check the type of a float
x = 3.14
print(type(x)) # Output: <class 'float'>

Check the type of a string
x = "Hello"
print(type(x)) # Output: <class 'str'>

Check the type of a boolean
x = True
print(type(x)) # Output: <class 'bool'>

Check the type of a list
x = [1, 2, 3]
print(type(x)) # Output: <class 'list'>

Check the type of a dictionary
x = {"name": "Léa", "age": 22}
print(type(x)) # Output: <class 'dict'>

Sometimes, it’s useful to check the type of an object before performing operations, especially when working
with different data inputs. For example, you might want to make sure a variable is an integer before
performing mathematical operations:
x = "10"
if type(x) == int:
 print(x * 2)
else:
 print("Not an integer!")

Using type() helps ensure your code handles the right types and avoids errors during execution.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 27

Scope of a variable
The scope of a variable refers to the region of the program where the variable can be accessed or
modified. There are two main types of scope in Python: local and global.

Local variable

A local variable is a variable that is defined within a function or block of code. It can only be used inside
that function or block. Once the function or block finishes executing, the local variable is destroyed and
no longer accessible.

def greet():
 name = "Leny" # Local variable
 print("Hello, " + name)

greet() # This will work and print "Hello, Leny"
print(name) # This will raise an error because 'name' is not accessible outside the function

Global variables

A global variable is a variable that is defined outside of any function and can be accessed from any part
of the program, including inside functions.

name = "Leny" # Global variable

def greet():
 print("Hello, " + name) # Can access the global variable

greet() # This will print "Hello, Leny"
print(name) # This will print "Leny"

Modifying Global Variables Inside a Function

If you want to modify a global variable inside a function, you need to use the global keyword. Without it,
the function will create a local variable with the same name, and the global variable will remain
unchanged.

Example
counter = 0 # Global variable

def increment():
 global counter # Use the global variable
 counter += 1

increment()
print(counter) # This will print 1

Without the global keyword, the function would not modify the global counter variable but would instead
create a new local variable.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 28

Conclusion
Variables are essential in Python because they allow you to store and manipulate data. By using variables,
you can create programs that remember and process information efficiently. Understanding the scope of
variables is important to control where and how they are accessed in your code.

Key Points

• Variables are used to store values that can be used later in your program.
• You can change the value of a variable at any time.
• Different types of data can be stored in variables, such as numbers, strings, and booleans.
• Scope refers to where a variable can be accessed: inside a function (local) or throughout the

program (global).
• Global variables can be accessed and modified anywhere, while local variables are confined to

the function or block in which they are created.
• Consistent naming and good understanding of variable scope help in writing clean, readable, and

error-free code.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 29

Strings
In Python, strings are sequences of characters used to store and manipulate text. You can define a string
using either single quotes (') or double quotes ("), as both are functionally identical. The choice between
them depends on personal preference or specific coding needs.

Examples
Using double quotes
name = "Leny"
print(name) # Output: Leny

Using single quotes
name = 'Leny'
print(name) # Output: Leny

Both examples produce the same result. The main consideration lies in how you handle strings containing
quotes.

When to use single or double quotes
• Consistency

To improve readability and maintainability, it’s good practice to consistently use either single or
double quotes throughout your code.

• Avoiding Escape Characters
When a string contains double quotes, enclose it in single quotes to avoid escaping the quotes.

quote = 'He said, "Hello!"'

Similarly, if a string contains single quotes, use double quotes:
sentence = "It's a sunny day"

This approach makes your code cleaner and easier to read. While Python allows you to escape quotes with
a backslash (\), this can make the code less readable:
Less readable
message = "He said, \"Hello!\""

More readable
message = 'He said, "Hello!"'

Key takeaways
• Strings in Python are flexible and easy to use.
• The choice between single and double quotes does not affect functionality but impacts

readability.
• To write clean and consistent code:

1. Pick one style and stick with it.
2. Use the type of quotes that minimizes the need for escape characters.
3. Prioritize clarity and simplicity in your code.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 30

Multiline string assignment
When you need to assign a string that spans multiple lines, Python provides two main options:

1. Using Triple Quotes (''' or """)

Triple quotes allow you to create multiline strings easily. These strings preserve line breaks,
spaces, and formatting exactly as written.

Example
paragraph = """This is a multiline string.
It spans several lines.
Each line break is preserved."""
print(paragraph)

Output
This is a multiline string.
It spans several lines.
Each line break is preserved.

You can use either triple single quotes (''') or triple double quotes ("""). Both work the same way.

2. Using Escape Characters

If you prefer single or double quotes but still need line breaks, use the newline escape character
(\n).

Example
paragraph = "This is a multiline string.\nIt spans several lines.\nEach line break is
preserved."
print(paragraph)

Output
This is a multiline string.
It spans several lines.
Each line break is preserved.

While this method works, it is less readable compared to using triple quotes.

Key points to remember
• Triple quotes are the most convenient way to handle multiline strings in Python, especially when

readability and formatting matter.
• Escape characters like \n are useful for dynamic strings or when precise control over line breaks

is needed.
• Both methods can be combined with string variables and expressions for flexibility.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 31

Booleans
Booleans represent one of the simplest data types in Python. They can only have one of two possible values:
True or False. These values are used to represent truthiness in programming and are especially helpful for
controlling the flow of code using conditional statements.

Key Points:

• Booleans are capitalized in Python: True and False.

• Booleans are often the result of comparison operations or logical expressions.

• In Python, other values can implicitly evaluate to True or False in a Boolean context (e.g., in if
statements).

Examples
Basic Booleans
Assigning Boolean values
a = True
b = False

Printing Booleans
print(a) # Output: True
print(b) # Output: False

we assign the Boolean values True and False to variables a and b, then print them to demonstrate how they
are displayed.

Booleans from Comparisons
Comparison operations result in Boolean values
x = 10
y = 20

print(x > y) # Output: False
print(x == y) # Output: False
print(x < y) # Output: True

shows how comparison operators like >, ==, and < return Boolean values based on the relationship between
the variables x and y.

Using Booleans in Conditional Statements
Conditional statements use Booleans to decide the flow
is_raining = True

if is_raining:
 print("Take an umbrella!")
else:
 print("Enjoy the sunshine!")

Output: Take an umbrella!

The Boolean value is_raining is used in an if statement to determine which message to print. This illustrates
how Booleans control program flow.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 32

Booleans from String and Numeric Values
Strings and numbers can be evaluated as Booleans
y = ""
x = "Hello"

print(bool(y)) # Output: False (empty string is False)
print(bool(x)) # Output: True (non-empty string is True)

a = 0
b = 15

print(bool(a)) # Output: False (0 is False)
print(bool(b)) # Output: True (non-zero numbers are True)

This example demonstrates how Python evaluates strings and numbers in a Boolean context. Empty strings
and 0 evaluate to False, while non-empty strings and non-zero numbers evaluate to True.

Booleans from Common Objects
Some objects evaluate to False in a Boolean context
print(bool(False)) # Output: False
print(bool(None)) # Output: False
print(bool(0)) # Output: False
print(bool("")) # Output: False (empty string)
print(bool(())) # Output: False (empty tuple)
print(bool([])) # Output: False (empty list)
print(bool({})) # Output: False (empty dictionary)

Non-empty or non-zero objects evaluate to True
print(bool("Hello")) # Output: True
print(bool(123)) # Output: True
print(bool([1, 2, 3])) # Output: True

Various objects like None, 0, and empty collections (e.g., lists, dictionaries) evaluate to False, while non-
empty or non-zero objects evaluate to True.

Using a Function with Booleans
Functions can return Boolean values
def is_even(number):
 return number % 2 == 0

print(is_even(4)) # Output: True (4 is even)
print(is_even(7)) # Output: False (7 is odd)

Using the function in a conditional statement
number = 10
if is_even(number):
 print(f"{number} is even.")
else:
 print(f"{number} is odd.")

Output: 10 is even.

This example shows how a function can return a Boolean value based on a condition. The function is_even
checks if a number is divisible by 2 and returns True or False. This is then used in an if statement.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 33

Checking if an Object is a String
A function to check if an object is a string
def is_string(obj):
 return isinstance(obj, str)

print(is_string("Hello")) # Output: True
print(is_string(123)) # Output: False
print(is_string([1, 2, 3])) # Output: False

Using the function in a conditional statement
obj = "Python"
if is_string(obj):
 print(f"{obj} is a string.")
else:
 print(f"{obj} is not a string.")

Output: Python is a string.

The function is_string uses the isinstance method to check if an object is of type str. This can be helpful to
validate inputs or perform type-specific operations.

Summary
Booleans are fundamental to programming logic. They help determine the behavior of a program through
conditions and control flow. Mastering how to use True and False, along with Boolean operations, is a key
step in learning Python.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 34

Operators
Operators are special symbols or keywords in Python used to perform operations on variables and values.
Python supports several types of operators that allow you to perform computations, comparisons, and
other tasks.

Types of Python Operators
1. Arithmetic Operators: Perform mathematical operations.

2. Comparison Operators: Compare two values and return a Boolean result.

3. Logical Operators: Combine Boolean values and return a Boolean result.

4. Bitwise Operators: Perform operations on binary representations of integers.

5. Assignment Operators: Assign values to variables.

6. Membership Operators: Test if a value is in a sequence.

7. Identity Operators: Compare the identity of two objects.

Examples
Arithmetic Operators
Arithmetic operations
x = 10
y = 3

print(x + y) # Output: 13 (Addition)
print(x - y) # Output: 7 (Subtraction)
print(x * y) # Output: 30 (Multiplication)
print(x / y) # Output: 3.333... (Division)
print(x % y) # Output: 1 (Modulus)
print(x ** y) # Output: 1000 (Exponentiation)
print(x // y) # Output: 3 (Floor division)

Arithmetic operators like +, -, *, /, %, **, and // allow you to perform basic mathematical calculations.

Comparison Operators
Comparison operations
x = 10
y = 20

print(x == y) # Output: False (Equality)
print(x != y) # Output: True (Inequality)
print(x > y) # Output: False (Greater than)
print(x < y) # Output: True (Less than)
print(x >= y) # Output: False (Greater than or equal to)
print(x <= y) # Output: True (Less than or equal to)

Comparison operators compare two values and return a Boolean result (True or False).

Logical Operators
Logical operations
a = True
b = False

print(a and b) # Output: False (Logical AND)
print(a or b) # Output: True (Logical OR)
print(not a) # Output: False (Logical NOT)

Logical operators like and, or, and not combine or invert Boolean values.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 35

Bitwise Operators
Bitwise operations
x = 5 # Binary: 0101
y = 3 # Binary: 0011

print(x & y) # Output: 1 (Bitwise AND)
print(x | y) # Output: 7 (Bitwise OR)
print(x ^ y) # Output: 6 (Bitwise XOR)
print(~x) # Output: -6 (Bitwise NOT)
print(x << 1) # Output: 10 (Left shift)
print(x >> 1) # Output: 2 (Right shift)

Bitwise operators perform operations on binary representations of integers.

Assignment Operators
Assignment operations
x = 10

x += 5 # Equivalent to x = x + 5
print(x) # Output: 15

x -= 3 # Equivalent to x = x - 3
print(x) # Output: 12

x *= 2 # Equivalent to x = x * 2
print(x) # Output: 24

x /= 4 # Equivalent to x = x / 4
print(x) # Output: 6.0

x %= 5 # Equivalent to x = x % 5
print(x) # Output: 1.0

x **= 3 # Equivalent to x = x ** 3
print(x) # Output: 1.0

x //= 2 # Equivalent to x = x // 2
print(x) # Output: 0.0

Bitwise assignment operators
y = 5

y &= 3 # Equivalent to y = y & 3
print(y) # Output: 1

y |= 2 # Equivalent to y = y | 2
print(y) # Output: 3

y ^= 3 # Equivalent to y = y ^ 3
print(y) # Output: 0

y <<= 1 # Equivalent to y = y << 1
print(y) # Output: 0

y >>= 1 # Equivalent to y = y >> 1
print(y) # Output: 0

Walrus operator
z = 10
print(result := z > 5) # Output: True (Assigns and evaluates in one step)

Assignment operators include arithmetic, modulus, exponentiation, floor division, bitwise operations, and
the walrus operator (:=), which assigns a value and returns it in a single step.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 36

Membership Operators
Membership operations
my_list = [1, 2, 3, 4, 5]

print(3 in my_list) # Output: True (3 is in the list)
print(6 not in my_list) # Output: True (6 is not in the list)

Membership operators in and not in check if a value exists in a sequence (e.g., list, string, tuple).

Identity Operators
Identity operations
x = [1, 2, 3]
y = x
z = [1, 2, 3]

print(x is y) # Output: True (x and y reference the same object)
print(x is z) # Output: False (x and z reference different objects)
print(x is not z) # Output: True (x and z are not the same object)

Identity operators is and is not check whether two variables reference the same object in memory.

Summary
Python operators are essential for performing various computations, comparisons, and logical operations.
Understanding how to use each type of operator effectively is key to writing efficient and clear Python code.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 37

Lists

Overview
Lists are one of the most versatile and widely used data structures in Python. They are mutable, ordered
collections of items that can hold elements of any data type. This flexibility makes lists an essential tool
for Python developers.

Key Features of Lists
1. Ordered: The elements in a list maintain their order, and you can access them using their index.

2. Mutable: Lists can be modified after their creation by adding, removing, or changing elements.

3. Heterogeneous: A single list can contain elements of different data types, such as integers,
strings, floats, or even other lists.

4. Dynamic: The size of a list can change dynamically, as Python allows you to add or remove
elements at any time.

Creating Lists
To create a list, use square brackets [] and separate the elements with commas.

Examples of lists
empty_list = []
numbers = [1, 2, 3, 4, 5]
mixed = ["Python", 3.14, True]
nested = [[1, 2], [3, 4]]

Using the List Constructor
Python provides a built-in list() constructor to create lists from other iterable objects, such as strings,
tuples, or ranges.

Examples using list()
from_string = list("hello") # ['h', 'e', 'l', 'l', 'o']
from_tuple = list((1, 2, 3)) # [1, 2, 3]
from_range = list(range(5)) # [0, 1, 2, 3, 4]

Accessing List Elements
By Index
Python uses zero-based indexing. To access an element, specify its position inside square brackets:

my_list = ["apple", "banana", "cherry"]
print(my_list[0]) # Output: apple
print(my_list[2]) # Output: cherry

Negative Indexing
Negative indices allow you to access elements from the end of the list:

print(my_list[-1]) # Output: cherry
print(my_list[-2]) # Output: banana

Slicing
Retrieve a subset of elements using slicing:

print(my_list[0:2]) # Output: ['apple', 'banana']
print(my_list[1:]) # Output: ['banana', 'cherry']

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 38

Modifying Lists

Adding Elements

Append: Add a single element to the end of the list.
my_list.append("date")
print(my_list) # Output: ['apple', 'banana', 'cherry', 'date']

Extend: Add multiple elements to the end.
my_list.extend(["elderberry", "fig"])
print(my_list) # Output: ['apple', 'banana', 'cherry', 'date', 'elderberry', 'fig']

Insert: Add an element at a specific index.
my_list.insert(1, "blueberry")
print(my_list) # Output: ['apple', 'blueberry', 'banana', 'cherry', 'date', 'elderberry',
'fig']

Removing Elements

Remove: Remove the first occurrence of a specific value.
my_list.remove("banana")
print(my_list) # Output: ['apple', 'blueberry', 'cherry', 'date', 'elderberry', 'fig']

Pop: Remove an element by index (default is the last element).
my_list.pop(2)
print(my_list) # Output: ['apple', 'blueberry', 'date', 'elderberry', 'fig']

Clear: Remove all elements.
my_list.clear()
print(my_list) # Output: []

Iterating Over Lists
Use loops to iterate through elements of a list.

Example: Iterating through a list
for fruit in ["apple", "banana", "cherry"]:
 print(fruit)

Common List Methods
• len(my_list): Returns the number of elements in the list.

• sorted(my_list): Returns a sorted version of the list (original list remains unchanged).

• my_list.reverse(): Reverses the elements of the list in place.

• my_list.index(value): Returns the index of the first occurrence of a value.

• my_list.count(value): Counts the number of occurrences of a value.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 39

Use Cases
Lists are used in various scenarios, such as:

1. Storing and manipulating data collections.

2. Implementing stacks and queues.

3. Managing dynamic data sets in applications.

4. Iterating over elements for computations.

By mastering lists, you unlock a powerful tool in Python capable of handling a diverse range of
programming challenges. With their flexibility and ease of use, lists are an indispensable component of
Python programming, suited for both beginners and experienced developers alike.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 40

Tuples

Overview
Tuples are an essential data structure in Python. They are immutable, ordered collections of items that
can store elements of any data type. While they share similarities with lists, tuples are designed to be
unchangeable after their creation, offering a reliable way to store fixed collections of data.

Key Features of Tuples
1. Ordered: The elements in a tuple maintain their order, and you can access them using their index.

2. Immutable: Once a tuple is created, its elements cannot be modified, added, or removed.

3. Heterogeneous: A tuple can contain elements of different data types, including integers, strings,
floats, and other tuples.

4. Hashable: Tuples can be used as keys in dictionaries if all their elements are hashable.

Creating Tuples
Tuples are created using parentheses () with elements separated by commas.

Examples of tuples
empty_tuple = ()
single_element_tuple = ("Python",) # Comma is necessary for single-element tuples
tuple_of_numbers = (1, 2, 3, 4)
mixed_tuple = ("Hello", 3.14, False)
nested_tuple = ((1, 2), (3, 4))

Without Parentheses
Python allows tuples to be created without parentheses in many cases, relying on commas to define the
tuple:

tuple_implicit = 1, 2, 3
print(type(tuple_implicit)) # Output: <class 'tuple'>

Accessing Tuple Elements
By Index
Like lists, tuples use zero-based indexing. You can access elements by their index:

my_tuple = ("apple", "banana", "cherry")
print(my_tuple[0]) # Output: apple
print(my_tuple[2]) # Output: cherry

Negative Indexing
Negative indices allow you to access elements from the end of the tuple:

print(my_tuple[-1]) # Output: cherry
print(my_tuple[-2]) # Output: banana

Slicing
You can retrieve a subset of elements using slicing:

print(my_tuple[0:2]) # Output: ('apple', 'banana')
print(my_tuple[1:]) # Output: ('banana', 'cherry')

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 41

Tuple Operations
Concatenation
You can combine two or more tuples using the + operator:

tuple1 = (1, 2, 3)
tuple2 = (4, 5, 6)
result = tuple1 + tuple2
print(result) # Output: (1, 2, 3, 4, 5, 6)

Repetition
Repeat a tuple multiple times using the * operator:

tuple_repeated = ("A", "B") * 3
print(tuple_repeated) # Output: ('A', 'B', 'A', 'B', 'A', 'B')

Membership
Check if an element exists in a tuple using the in keyword:

print("apple" in my_tuple) # Output: True
print("orange" not in my_tuple) # Output: True

Immutable Nature of Tuples
Tuples cannot be modified after their creation:

my_tuple = (1, 2, 3)
my_tuple[1] = 10 # This will raise a TypeError

If modifications are required, you can convert the tuple to a list, make changes, and convert it back to a
tuple:

temp_list = list(my_tuple)
temp_list[1] = 10
my_tuple = tuple(temp_list)
print(my_tuple) # Output: (1, 10, 3)

Common Tuple Methods
• len(my_tuple): Returns the number of elements in the tuple.

• my_tuple.index(value): Returns the index of the first occurrence of a value.

• my_tuple.count(value): Counts the number of occurrences of a value in the tuple.

Use Cases
Tuples are ideal for scenarios where data should remain constant and protected from unintentional
modifications. Common use cases include:

1. Returning multiple values from a function.

2. Storing related items, such as geographic coordinates or RGB color values.

3. Using tuples as keys in dictionaries for compound lookups.

By understanding tuples, you gain access to a lightweight and efficient way to work with fixed collections
of data in Python. Their immutability makes them a reliable choice for various programming tasks.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 42

Python Sets

Overview
Sets are an unordered collection of unique elements in Python. They are mutable, making them suitable
for storing and performing operations on a collection of distinct items. Sets are highly efficient for
membership testing and eliminating duplicates.

Key features of sets
1. Unordered: The elements in a set do not maintain a specific order.

2. Unique: Each element in a set is unique, with duplicates automatically removed.

3. Mutable: Sets can be modified after their creation by adding or removing elements.

4. Hashable Elements: Only hashable (immutable) data types, such as numbers, strings, or tuples,
can be added to a set.

Creating sets
Sets are created using curly braces {} or the set() constructor. Empty sets must be created using set()
because {} creates an empty dictionary.

Examples of sets
empty_set = set()
fruit_set = {"apple", "banana", "cherry"}
mixed_set = {42, 3.14, "Python"}

Using the set() constructor
The set() constructor can create sets from other iterable objects, such as lists, strings, or tuples:

from_list = set([1, 2, 3, 4, 4]) # {1, 2, 3, 4}
from_string = set("hello") # {'e', 'h', 'l', 'o'}
from_tuple = set(("a", "b", "a")) # {'a', 'b'}

Accessing Set Elements
Since sets are unordered, elements cannot be accessed by index or slicing. Instead, you can iterate
through a set using a loop:

for fruit in {"apple", "banana", "cherry"}:
 print(fruit)

Modifying Sets
Adding Elements

Add: Add a single element to the set.
my_set = {1, 2, 3}
my_set.add(4)
print(my_set) # Output: {1, 2, 3, 4}

Update: Add multiple elements from an iterable.
my_set.update([5, 6, 7])
print(my_set) # Output: {1, 2, 3, 4, 5, 6, 7}

Removing Elements

Remove: Remove a specific element. Raises a KeyError if the element is not found.
my_set.remove(2)
print(my_set) # Output: {1, 3, 4, 5, 6, 7}

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 43

Discard: Remove a specific element without raising an error if it is not found.
my_set.discard(10) # No error, even though 10 is not in the set

Pop: Remove and return an arbitrary element from the set.
element = my_set.pop()
print(element) # Output: Randomly removed element

Clear: Remove all elements from the set.
my_set.clear()
print(my_set) # Output: set()

Set Operations
Sets provide various operations for mathematical computations like union, intersection, and difference.

Union
Combine elements from two sets, keeping only unique elements:

set1 = {1, 2, 3}
set2 = {3, 4, 5}
union_set = set1 | set2 # {1, 2, 3, 4, 5}

Intersection
Find common elements between two sets:

intersection_set = set1 & set2 # {3}

Difference
Find elements in one set but not the other:

difference_set = set1 - set2 # {1, 2}

Symmetric Difference
Find elements in either set but not in both:

symmetric_diff = set1 ^ set2 # {1, 2, 4, 5}

Subset and Superset

Check if a set is a subset of another:
print({1, 2} <= {1, 2, 3}) # Output: True

Check if a set is a superset of another:
print({1, 2, 3} >= {1, 2}) # Output: True

Common Set Methods
• len(my_set): Returns the number of elements in the set.

• my_set.copy(): Creates a shallow copy of the set.

• my_set.isdisjoint(other_set): Checks if two sets have no elements in common.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 44

Use Cases
Sets are ideal for scenarios requiring uniqueness or mathematical operations. Common use cases
include:

1. Eliminating duplicates from a list.

2. Checking for membership efficiently.

3. Performing set-based operations in algorithms.

4. Representing concepts like tags or categories where order doesn’t matter.

By mastering sets, you add a robust tool to your Python programming toolkit. Sets excel in scenarios that
demand efficiency, uniqueness, and mathematical computation.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 45

Python Dictionaries

Overview
Dictionaries in Python are an essential and versatile data structure that allows you to store data in key-
value pairs. They are mutable and unordered, making them suitable for representing and manipulating
data that can be associated with unique keys.

Key features of dictionaries
1. Key-Value Pair Structure: Each key maps to a specific value.

2. Keys Are Unique: A key can only appear once in a dictionary.

3. Mutable: The dictionary's content can be changed after its creation.

4. Unordered: The order of items is not guaranteed, though Python (from version 3.7 onwards)
maintains insertion order for dictionaries.

5. Efficient Lookup: Dictionaries provide fast access to values via keys.

Creating dictionaries
Dictionaries are created using curly braces {} with key-value pairs separated by a colon :. Alternatively, the
dict() constructor can be used.

Examples of dictionaries
empty_dict = {}
fruit_prices = {"apple": 1.2, "banana": 0.5, "cherry": 2.5}
mixed_dict = {"name": "Alice", "age": 25, "is_student": True}

Using the dict() constructor
The dict() constructor can create dictionaries from sequences of key-value pairs or keyword arguments:

from_tuples = dict([("a", 1), ("b", 2), ("c", 3)]) # {'a': 1, 'b': 2, 'c': 3}
from_kwargs = dict(x=10, y=20, z=30) # {'x': 10, 'y': 20, 'z': 30}

Syntax of the dict() constructor
The dict() constructor accepts an iterable of key-value pairs, such as a list of tuples or keyword
arguments:

Example using list of tuples
example_dict = dict([("key1", "value1"), ("key2", "value2")])
print(example_dict) # Output: {'key1': 'value1', 'key2': 'value2'}

Example using keyword arguments
example_dict = dict(a=1, b=2, c=3)
print(example_dict) # Output: {'a': 1, 'b': 2, 'c': 3}

This flexibility makes the dict() constructor a powerful tool for creating dictionaries programmatically.

Accessing dictionary elements
Accessing values by keys
You can access a value by specifying its corresponding key:

fruit_prices = {"apple": 1.2, "banana": 0.5}
print(fruit_prices["apple"]) # Output: 1.2

Using get()
The get() method provides a safe way to access values without risking a KeyError:

print(fruit_prices.get("cherry", "Not found")) # Output: Not found

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 46

Modifying Dictionaries
Adding or Updating Key-Value Pairs
Assign a value to a key to add or update an entry:

fruit_prices["cherry"] = 2.5 # Adds 'cherry'
fruit_prices["apple"] = 1.3 # Updates 'apple'

Removing Elements

pop(): Removes and returns the value for a given key.
price = fruit_prices.pop("banana")
print(price) # Output: 0.5

del: Deletes a key-value pair.
del fruit_prices["apple"]

popitem(): Removes and returns the last inserted key-value pair (since Python 3.7).
key, value = fruit_prices.popitem()

clear(): Removes all entries from the dictionary.
fruit_prices.clear()
print(fruit_prices) # Output: {}

Dictionary Methods
Commonly Used Methods

keys(): Returns a view object of all the keys.
print(fruit_prices.keys())

values(): Returns a view object of all the values.
print(fruit_prices.values())

items(): Returns a view object of all key-value pairs.
print(fruit_prices.items())

update(): Updates the dictionary with key-value pairs from another dictionary or
iterable.
fruit_prices.update({"orange": 1.1, "grape": 3.0})

Iterating Through a Dictionary
Keys
for key in fruit_prices:
 print(key)

Values
for value in fruit_prices.values():
 print(value)

Key-Value Pairs
for key, value in fruit_prices.items():
 print(f"{key}: {value}")

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 47

Use Cases
Dictionaries are ideal for scenarios where data is organized in a key-value structure. Common use cases
include:

1. Storing configuration settings.

2. Mapping identifiers to values (e.g., usernames to user data).

3. Implementing lookups for quick data access.

4. Storing structured data such as JSON-like formats.

By mastering dictionaries, you unlock a powerful way to manage and manipulate data efficiently in
Python. Their flexibility and speed make them indispensable for various programming tasks.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 48

If..else Statements

Introduction
In programming, conditions allow a program to make decisions based on certain criteria. By using
conditional statements, you can control the flow of execution and make your program more dynamic. In
Python, the most common way to implement conditions is through if statements. This chapter will
explain how conditions work in Python, and how to use if, elif, and else statements to create decision-
making logic.

The if statement
The if statement in Python is used to execute a block of code only if a specified condition evaluates to
True. If the condition is False, the code inside the if block is skipped.

Syntax of if Statement
if condition:
 # Code block to execute if the condition is True

• condition: A Boolean expression that evaluates to either True or False.
• The code inside the if block runs only if the condition is True.

Example:
age = 20

if age >= 18:
 print("You are an adult.")

In this example, since the age is 20, which is greater than or equal to 18, the program prints "You are an
adult."

The else statement
Sometimes, you need to specify an alternative block of code to execute if the condition is not met (i.e.,
when it evaluates to False). This can be done using the else statement.

Syntax of if-else Statement
if condition:
 # Code block to execute if the condition is True
else:
 # Code block to execute if the condition is False

Example:
age = 16

if age >= 18:
 print("You are an adult.")
else:
 print("You are a minor.")

Here, the else block is executed because age is less than 18, so the program prints "You are a minor."

The elif statement
If you have multiple conditions to check, you can use the elif (short for "else if") statement. This allows you
to check additional conditions if the previous ones are False.

Syntax of if-elif-else Statement
if condition1:
 # Code block to execute if condition1 is True
elif condition2:
 # Code block to execute if condition2 is True
else:
 # Code block to execute if none of the conditions are True

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 49

Example:
age = 70

if age < 18:
 print("You are a minor.")
elif age >= 18 and age < 65:
 print("You are an adult.")
else:
 print("You are a senior.")

In this example:

• If age is less than 18, it prints "You are a minor."

• If age is between 18 and 64 (inclusive), it prints "You are an adult."

• If neither of the above conditions is true (i.e., age is 65 or older), it prints "You are a senior."

Nested Conditions
Sometimes, you may need to place one condition inside another. This is called nesting and can be done
by using an if statement inside another if, elif, or else block.

Syntax of Nested Conditions
if condition1:
 if condition2:
 # Code block to execute if both condition1 and condition2 are True
 else:
 # Code block to execute if condition1 is True and condition2 is False
else:
 # Code block to execute if condition1 is False

Example:
age = 30
employment_status = "employed"

if age >= 18:
 if employment_status == "employed":
 print("You are an employed adult.")
 else:
 print("You are an unemployed adult.")
else:
 print("You are a minor.")

Here:

• If age is 18 or older and employment_status is "employed," it prints "You are an employed adult."

• If age is 18 or older but employment_status is not "employed," it prints "You are an unemployed
adult."

• If age is less than 18, it prints "You are a minor."

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 50

Comparison Operators
In conditional statements, you often need to compare values. Python provides several comparison
operators for this purpose:

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Example of Comparison Operators:
age = 25
if age >= 18:
 print("You are an adult.")
else:
 print("You are a minor.")

In this case, the >= operator checks if age is greater than or equal to 18.

Logical Operators
You can combine multiple conditions using logical operators: and, or, and not.

• and: Returns True if both conditions are True.

• or: Returns True if at least one condition is True.

• not: Reverses the Boolean value of the condition.

Example of Logical Operators:
age = 30
citizen = True

if age >= 18 and citizen:
 print("You are an eligible voter.")
else:
 print("You are not eligible to vote.")

Here, the program checks if both age is greater than or equal to 18 and if the person is a citizen. Only if
both conditions are True, the message "You are an eligible voter." is printed.

Conclusion
In this chapter, we've covered the essentials of using conditional statements in Python with if, elif, and
else. You can combine comparison operators, logical operators, and even nest conditions to create more
complex decision-making logic. Understanding how to use these statements will allow you to create more
interactive and dynamic programs.

Key Takeaways:

• Use if to execute a block of code if a condition is True.

• Use else to provide an alternative if the if condition is False.

• Use elif to check multiple conditions.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 51

• Combine conditions with logical operators like and, or, and not.

• Nest if statements for more complex decision-making.

Now that you know how to make decisions in Python, you can start creating programs that react differently
based on various conditions !

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 52

The pass statement
In Python, the pass statement is a placeholder that does nothing. It is used when a statement is required
syntactically but you do not want to execute any code. The pass statement can be useful in conditional
structures when you want to define the condition but leave the block empty for now or for future
implementation.

Syntax of pass Statement
if condition:
 pass # Placeholder, does nothing
else:
 # Code block to execute if condition is False

Example:
age = 16

if age >= 18:
 print("You are an adult.")
else:
 pass # No action if the person is under 18

In this example:

• The else block is executed only if age is less than 18.

• However, the pass statement inside the else block means that nothing happens when the
condition is met. The program will simply continue executing after the conditional statement.

Another Example with Future Code
The pass statement can also be used when you plan to implement code later but need to structure your
program now.

age = 20
status = "employed"

if age >= 18:
 pass # Placeholder for future implementation
elif status == "employed":
 print("You are employed.")
else:
 print("You are a minor.")

In this case, the pass statement in the first if block indicates that you plan to add additional logic or code
in the future, but for now, nothing will happen when age is 18 or older.

Conclusion
The pass statement is a simple yet powerful tool in Python for handling empty blocks of code. It is
especially useful when building out the structure of your program, allowing you to write placeholder code
that can be filled in later.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 53

While Loops in Python

Introduction
In programming, loops allow a block of code to be executed multiple times. This is useful when you need
to repeat a task, such as processing items in a list, handling user input, or performing calculations
repeatedly. In Python, one of the most common types of loops is the while loop. A while loop repeatedly
executes a block of code as long as a specified condition remains True.

In this chapter, we will explore how to use the while loop in Python, understand its structure, and look at
various examples of how it can be applied.

The syntax of a while loop
The basic syntax of a while loop is as follows:

while condition:
 # Code block to execute as long as the condition is True

• condition: A boolean expression that is evaluated before each iteration of the loop.
• The code inside the loop runs as long as the condition evaluates to True. When the condition

becomes False, the loop stops.

Example:
count = 0

while count < 5:
 print("Count is:", count)
 count += 1

In this example:

• The loop will print the value of count while it is less than 5.

• After each iteration, the value of count is incremented by 1.

• Once count reaches 5, the condition count < 5 becomes False, and the loop stops.

Output:
Count is: 0
Count is: 1
Count is: 2
Count is: 3
Count is: 4

Infinite Loops
An infinite loop occurs when the condition of the while loop never becomes False. This can happen if the
condition is always True or if there is no mechanism to update the condition.

For example:
while True:
 print("This will run forever!")

This loop will continuously print "This will run forever!" without ever stopping. Infinite loops are typically
used in server programs, video games, or applications where the program needs to keep running and
waiting for events or input from the user.

Stopping an Infinite Loop
You can break out of an infinite loop using the break statement. This allows you to exit the loop under
certain conditions.

Example:
count = 0

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 54

while True:
 print("Count is:", count)
 count += 1
 if count >= 5:
 break # Exit the loop when count reaches 5

Here, the loop runs until count reaches 5, at which point the break statement exits the loop.

Output:
Count is: 0
Count is: 1
Count is: 2
Count is: 3
Count is: 4

The else Clause in a while Loop
In Python, a while loop can have an optional else block that is executed when the loop condition
becomes False. The else block will not execute if the loop is terminated by a break statement.

Syntax:
while condition:
 # Code block to execute as long as the condition is True
else:
 # Code block to execute when the condition becomes False

Example:
count = 0

while count < 5:
 print("Count is:", count)
 count += 1
else:
 print("Loop has finished.")

Here:

• The loop will run while count is less than 5, printing the value of count during each iteration.

• When count becomes 5, the condition is no longer True, so the else block is executed, printing
"Loop has finished."

Output:
Count is: 0
Count is: 1
Count is: 2
Count is: 3
Count is: 4
Loop has finished.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 55

Controlling the flow with break, continue, and pass
Python provides a few control flow statements that can be used inside while loops to alter the normal
behavior:

The break Statement
The break statement is used to exit the loop prematurely, regardless of the loop's condition.

count = 0

while count < 10:
 if count == 5:
 break # Exit the loop when count is 5
 print(count)
 count += 1

Here, the loop will print the values of count from 0 to 4 and will exit once count reaches 5 because of the
break statement.

Output:
0
1
2
3
4

The continue Statement
The continue statement is used to skip the current iteration and proceed to the next one. It can be useful
if you want to skip specific conditions but continue the loop.

count = 0

while count < 5:
 count += 1
 if count == 3:
 continue # Skip the rest of the loop when count is 3
 print(count)

In this example:

• The loop prints all values of count except when count is 3, as the continue statement skips the
printing when the condition is met.

Output:
1
2
4
5

The pass Statement
The pass statement is a placeholder that does nothing. It is used when a statement is required
syntactically but you do not want to execute any code. In a while loop, it can be used as a placeholder for
future implementation.

count = 0

while count < 5:
 pass # No action, but the loop will continue until count reaches 5

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 56

Nested while Loops
You can place one while loop inside another, called a nested while loop. This is useful for working with
multi-dimensional data, such as a matrix or grid, or when you need to perform a set of actions multiple
times within each iteration of another loop.

Example:
i = 0
while i < 3:
 j = 0
 while j < 2:
 print(f"i = {i}, j = {j}")
 j += 1
 i += 1

This example prints all combinations of i and j where i ranges from 0 to 2 and j ranges from 0 to 1.

Output:
i = 0, j = 0
i = 0, j = 1
i = 1, j = 0
i = 1, j = 1
i = 2, j = 0
i = 2, j = 1

Conclusion
The while loop is a powerful tool in Python that allows you to repeat actions as long as a condition is True.
By using break, continue, and pass, you can control the flow of your loops, making your code more
flexible and efficient. Whether you are processing data, waiting for user input, or managing repetitive
tasks, understanding and mastering while loops will help you write better and more dynamic Python
programs.

Key Takeaways:

• The while loop repeats a block of code as long as a condition is True.

• Use the break statement to exit the loop early.

• Use the continue statement to skip the current iteration.

• Use the pass statement as a placeholder when no action is required.

• You can nest while loops to handle more complex tasks.

Now that you understand how to work with while loops, you can use them to write programs that handle
repetitive tasks efficiently !

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 57

The for Loop in Python

Introduction
In programming, loops are used to repeat a block of code multiple times. A for loop is one of the most
commonly used loops in Python. Unlike the while loop, which repeats code while a condition is true, a for
loop iterates over a sequence (such as a list, tuple, dictionary, string, or range) and executes the code
block for each item in that sequence.

In this chapter, we will explore how to use the for loop in Python, understand its structure, and look at
different examples to illustrate how you can use for loops effectively.

The Syntax of a for Loop
The basic syntax of a for loop in Python is:

for item in sequence:
 # Code block to execute for each item in the sequence

• item: This represents each element in the sequence.

• sequence: This is the collection (list, tuple, string, etc.) over which the for loop iterates.

• The code inside the loop executes once for each item in the sequence.

Example:
fruits = ["apple", "banana", "cherry"]

for fruit in fruits:
 print(fruit)

In this example:

• The for loop iterates over each element in the fruits list.

• For each element (or fruit), the program prints its value.

Output:
apple
banana
cherry

The range() Function
In Python, the range() function is commonly used with for loops to iterate over a sequence of numbers.
The range() function generates a sequence of numbers, which is useful when you want to repeat an action
a specific number of times.

Syntax of range()
range(start, stop, step)

• start: The value of the first number in the sequence (inclusive). The default is 0.

• stop: The value at which the sequence stops (exclusive).

• step: The increment between each number in the sequence. The default is 1.

Example with range():
for i in range(5):
 print(i)

This loop will iterate from 0 to 4, printing each number in the sequence.

Output:
0
1
2

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 58

3
4

Example with range() and custom start/step values:
for i in range(2, 10, 2):
 print(i)

In this example:

• The loop starts at 2, increments by 2, and stops before 10.

• It prints the even numbers between 2 and 8.

Output:
2
4
6
8

Iterating Over Strings
You can also use a for loop to iterate over the characters in a string. Each character in the string is treated
as an individual item.

Example:
word = "hello"

for letter in word:
 print(letter)

In this example:

• The loop iterates over each character in the string word and prints each letter.

Output:
h
e
l
l
o

Iterating Over Dictionaries
In Python, a dictionary is a collection of key-value pairs. You can iterate over a dictionary in various ways:
through keys, values, or both.

Example: Iterating Over Dictionary Keys
person = {"name": "Alice", "age": 30, "city": "New York"}

for key in person:
 print(key)

This loop prints the keys of the dictionary person.

Output:
name
age
city

Example: Iterating Over Dictionary Values
for value in person.values():
 print(value)

This loop prints the values of the dictionary person.

Output:
Alice

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 59

30
New York

Example: Iterating Over Both Keys and Values
for key, value in person.items():
 print(f"{key}: {value}")

This loop prints both the keys and values of the dictionary.

Output:
name: Alice
age: 30
city: New York

Nested for Loops
You can use for loops inside other for loops, known as nested for loops. This is useful when working with
multi-dimensional data structures like lists of lists (2D arrays) or matrices.

Syntax of Nested for Loops:
for item1 in sequence1:
 for item2 in sequence2:
 # Code block to execute for each combination of item1 and item2

Example: Nested for Loop to Print a 2D Matrix
matrix = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

for row in matrix:
 for element in row:
 print(element, end=" ")
 print() # Newline after each row

In this example:

• The outer loop iterates over each row in the matrix.

• The inner loop iterates over each element within the row.

Output:
1 2 3
4 5 6
7 8 9

The else Clause in a for Loop
Just like in an if statement, you can use an else clause with a for loop. The else block will execute when
the loop completes its normal iteration, i.e., when the loop is not terminated by a break statement.

Example:
for i in range(5):
 print(i)
else:
 print("Loop has finished.")

In this case:

• The else block will execute after the loop has completed all iterations.

Output:
0
1
2

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 60

3
4
Loop has finished.

Example with break and else:
for i in range(5):
 if i == 3:
 print("Found 3, exiting loop!")
 break
else:
 print("Loop completed without breaking.")

In this case:

• The loop will stop when i equals 3 due to the break statement, so the else block will not execute.

Output:
Found 3, exiting loop!

The continue Statement
The continue statement is used to skip the rest of the code in the current iteration and jump to the next
iteration of the loop. It is often used when you want to ignore certain elements in a sequence based on a
condition.

Example with continue:
for i in range(5):
 if i == 3:
 continue # Skip the iteration when i is 3
 print(i)

In this example:

• The loop skips the iteration when i equals 3, so 3 is not printed.

Output:
0
1
2
4

Conclusion
The for loop is an essential tool in Python, allowing you to iterate over sequences and perform repetitive
tasks efficiently. By combining for loops with functions like range(), iterating over strings, lists, and
dictionaries, you can write flexible and dynamic code. Additionally, features like nested for loops, the
continue statement, and the else clause further enhance the power and flexibility of for loops.

Key Takeaways:

• Use the for loop to iterate over sequences (lists, strings, dictionaries, etc.).

• The range() function helps you generate sequences of numbers for use in loops.

• You can nest for loops to handle more complex data structures.

• The else clause with for loops runs when the loop completes without a break.

• Use the continue statement to skip specific iterations in the loop.

With this knowledge, you are now equipped to leverage for loops to write efficient and effective Python
code!

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 61

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 62

Functions in Python

Introduction
In programming, functions are used to group a set of statements or instructions that perform a specific
task. Functions allow you to break down complex problems into smaller, manageable parts, make your
code reusable, and improve readability. Python makes it easy to define and use functions, making them
one of the most essential and powerful tools in your coding toolkit.

This chapter will explain how to define, call, and work with functions in Python. We will cover the basic
syntax, parameters, return values, explore some more advanced concepts like variable scope, and
introduce recursive functions.

Defining a Function
In Python, you define a function using the def keyword, followed by the function name and a set of
parentheses that may contain parameters.

Syntax:
def function_name(parameters):
 # Code block that performs the task
 # Optional return statement

• def: This keyword tells Python you are defining a function.

• function_name: This is the name you give to your function, and it follows the same rules as
variable names.

• parameters: These are the inputs that the function can accept. Parameters are optional, and you
can define a function without any.

• Code block: This contains the logic that the function will execute.

• return: The return statement is optional, and it sends the output from the function back to the
caller.

Example: A Simple Function
def greet():
 print("Hello, world!")

In this example:

• The function greet takes no parameters and simply prints "Hello, world!" when called.

Calling the Function:
To execute the code inside the function, you "call" it by using its name followed by parentheses.

greet() # Output: Hello, world!

Output:
Hello, world!

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 63

Functions with Parameters
You can define a function that accepts parameters (inputs) to make it more dynamic. Parameters allow
you to pass data into the function, making it more flexible and reusable.

Syntax of Function with Parameters:
def function_name(parameter1, parameter2):
 # Code block using the parameters

Example: Function with Parameters
def greet_person(name):
 print(f"Hello, {name}!")

In this example:

• The function greet_person takes one parameter name and prints a personalized greeting.

Calling the Function with Arguments:
greet_person("Alice") # Output: Hello, Alice!
greet_person("Bob") # Output: Hello, Bob!

Output:
Hello, Alice!
Hello, Bob!

Returning Values from Functions
Functions can return values using the return keyword. This allows you to capture the result of the function
and use it elsewhere in your program.

Syntax of Return:
def function_name(parameters):
 # Some code
 return result

• The return statement sends the result back to the caller, and it can be stored in a variable or used
directly.

Example: Function with Return Value
def add(a, b):
 return a + b

This function takes two parameters, a and b, adds them together, and returns the sum.

Calling the Function with Return:
result = add(3, 5)
print(result) # Output: 8

Output:
8

Example: Using the Return Value Directly
print(add(10, 20)) # Output: 30

Output:
30

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 64

Default Parameters
In Python, you can provide default values for parameters in case the caller does not supply them. Default
parameters are assigned values during function definition.

Syntax with Default Parameters:
def function_name(parameter1=value1, parameter2=value2):
 # Code block

• If no argument is provided for a parameter, its default value is used.

Example: Function with Default Parameters
def greet_person(name="Guest"):
 print(f"Hello, {name}!")

In this example:

• If no name is provided, the default value "Guest" will be used.

Calling the Function:
greet_person() # Output: Hello, Guest!
greet_person("Alice") # Output: Hello, Alice!

Output:
Hello, Guest!
Hello, Alice!

Keyword Arguments
In Python, you can specify the argument names explicitly when calling a function. This is useful when a
function has many parameters, and you want to pass values in a specific order or provide clarity.

Syntax for Keyword Arguments:
function_name(parameter1=value1, parameter2=value2)

Example: Using Keyword Arguments
def greet_person(name, age):
 print(f"Hello, {name}. You are {age} years old.")

Calling the Function with Keyword Arguments:
greet_person(name="Alice", age=25) # Output: Hello, Alice. You are 25 years old.

This approach makes the code more readable, especially when you have many parameters.

Output:
Hello, Alice. You are 25 years old.

Variable Scope in Functions
In Python, the scope refers to the region of the program where a variable is accessible. When you define a
variable inside a function, it is local to that function and cannot be accessed outside of it. Variables
defined outside functions are global and can be accessed anywhere.

Example: Local Variables
def my_function():
 local_variable = 10
 print(local_variable)

my_function() # Output: 10
print(local_variable) # Error: NameError: name 'local_variable' is not defined

In this case:

• local_variable is defined inside my_function and cannot be accessed outside it.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 65

Example: Global Variables
global_variable = 20

def my_function():
 print(global_variable)

my_function() # Output: 20

In this case:

• global_variable is defined outside the function and is accessible inside the function.

Variable-Length Arguments
In some cases, you might not know beforehand how many arguments will be passed to the function.
Python provides a way to pass a variable number of arguments using *args (for non-keyword arguments)
and **kwargs (for keyword arguments).

Using *args for Variable-Length Non-Keyword Arguments:
def my_function(*args):
 for arg in args:
 print(arg)

Calling the Function:
my_function(1, 2, 3, 4) # Output: 1 2 3 4

Here, *args allows the function to accept any number of arguments.

Using **kwargs for Variable-Length Keyword Arguments:
def my_function(**kwargs):
 for key, value in kwargs.items():
 print(f"{key}: {value}")

Calling the Function:
my_function(name="Alice", age=25) # Output: name: Alice, age: 25

In this example, **kwargs collects keyword arguments into a dictionary.

Recursive Functions
A recursive function is a function that calls itself in order to solve a problem. Recursion is useful when a
problem can be broken down into smaller sub-problems of the same type. However, it is important to
define a base case that stops the recursion to prevent infinite loops.

Syntax of a Recursive Function:
def function_name(parameters):
 # Base case: stop the recursion
 if condition:
 return result
 else:
 # Recursive call
 return function_name(modified_parameters)

Example: Factorial Function (Recursive)
The factorial of a number n is the product of all positive integers less than or equal to n. For example, 5! =
5 * 4 * 3 * 2 * 1 = 120. The factorial of n can be defined recursively as:

Recursive Function to Calculate Factorial:
def factorial(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 66

Calling the Function:
result = factorial(5)
print(result) # Output: 120

Output:
120

In this example:

• The function factorial calls itself with a smaller value of n until it reaches the base case n == 0 or
n == 1.

Important Points About Recursion:
• Base Case: Every recursive function must have a base case that terminates the recursion.

• Recursive Case: This is where the function calls itself, gradually breaking down the problem.

• Stack Overflow: Recursion uses the call stack, and excessive recursion without a base case or
with too many recursive calls can cause a "stack overflow."

Conclusion
Functions are a powerful feature in Python that allow you to organize your code, make it reusable, and
improve readability. By defining functions with parameters, return values, default values, and variable-
length arguments, you can handle complex tasks efficiently. Understanding the scope of variables and
how to work with both local and global variables will help you write more effective and modular code.

Additionally, recursive functions are a unique way of solving problems that can be broken down into
smaller, similar sub-problems. They are a valuable tool for certain types of problems, such as
mathematical computations or tree-like structures.

Key Takeaways:

• Use the def keyword to define functions in Python.

• Functions can accept parameters and return values.

• Default parameters and keyword arguments make functions more flexible.

• Local variables are only accessible within the function, while global variables are accessible
everywhere.

• *args and **kwargs allow functions to accept a variable number of arguments.

• Recursive functions allow you to solve problems by breaking them down into smaller sub-
problems.

Now that you have a solid understanding of functions and recursion, you can start using them to break
your programs into smaller, manageable pieces !

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 67

Lambda Functions

Introduction
In Python, lambda functions are a type of anonymous function—functions that are defined without a
name. They are concise and often used for short-term or temporary tasks. Lambda functions are
particularly useful when you need a function for a brief operation and don't want to formally define it using
the regular def syntax.

This chapter will introduce you to lambda functions, explain their syntax, and provide examples of how to
use them in Python programming.

Syntax of Lambda Functions
A lambda function is defined using the lambda keyword, followed by one or more parameters, a colon,
and the expression to be evaluated and returned.

Syntax:
lambda arguments: expression

• lambda: The keyword that tells Python you are defining a lambda function.

• arguments: The parameters that the function will accept (can be multiple).

• expression: A single expression that will be evaluated and returned. This is the result of the
lambda function.

Example: Basic Lambda Function
A simple lambda function that adds 2 to a number
add_two = lambda x: x + 2
print(add_two(3)) # Output: 5

In this example:

• lambda x: x + 2 defines an anonymous function that adds 2 to the argument x.

• add_two(3) calls the function with x = 3, and the result is 5.

Output:
5

Lambda Functions with Multiple Arguments
Lambda functions can take multiple arguments. These arguments are separated by commas within the
parentheses.

Example: Lambda Function with Two Arguments
multiply = lambda x, y: x * y
print(multiply(4, 5)) # Output: 20

In this example:

• lambda x, y: x * y defines an anonymous function that multiplies two numbers x and y.

• multiply(4, 5) calls the function with x = 4 and y = 5, and the result is 20.

Output:
20

Using Lambda Functions with Built-in Functions
Lambda functions are commonly used with Python's built-in functions like map(), filter(), and sorted().
These functions allow you to apply the lambda function to a sequence of data or sort data efficiently.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 68

Example: Using map() with Lambda
map() applies a given function to all items in an input list (or any iterable).

numbers = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x ** 2, numbers))
print(squared) # Output: [1, 4, 9, 16, 25]

In this example:

• map(lambda x: x ** 2, numbers) applies the lambda function that squares each element in the
numbers list.

Output:
[1, 4, 9, 16, 25]

Example: Using filter() with Lambda
filter() filters a sequence of items based on a condition defined by a lambda function.

numbers = [1, 2, 3, 4, 5, 6]
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(even_numbers) # Output: [2, 4, 6]

In this example:

• filter(lambda x: x % 2 == 0, numbers) filters the numbers list, keeping only even numbers.

Output:
[2, 4, 6]

Example: Using sorted() with Lambda
sorted() can be used to sort elements based on a custom key, which can be provided using a lambda
function.

data = [("apple", 3), ("banana", 1), ("cherry", 2)]
sorted_data = sorted(data, key=lambda x: x[1])
print(sorted_data) # Output: [('banana', 1), ('cherry', 2), ('apple', 3)]

In this example:

• sorted(data, key=lambda x: x[1]) sorts the list of tuples based on the second element in each
tuple.

Output:
[('banana', 1), ('cherry', 2), ('apple', 3)]

Lambda Functions for Simple Operations
Lambda functions are especially useful when performing simple operations where a full function
definition would be overkill.

Example: Adding Two Numbers
add = lambda a, b: a + b
print(add(10, 20)) # Output: 30

Example: Checking Even or Odd
is_even = lambda x: x % 2 == 0
print(is_even(4)) # Output: True
print(is_even(7)) # Output: False

Advantages of Lambda Functions
Lambda functions offer several advantages:

• Concise: Lambda functions provide a more compact way to define simple functions.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 69

• Functional Style: They are often used in functional programming techniques where functions are
passed as arguments to other functions like map(), filter(), and reduce().

• Anonymous: Since lambda functions are anonymous (i.e., they do not require a name), they are
useful for short tasks where you don't want to define a full function.

Limitations of Lambda Functions
Despite their advantages, lambda functions have some limitations:

• Single Expression: A lambda function can only contain a single expression. It cannot contain
multiple statements or perform multiple operations.

• Readability: While concise, lambda functions can sometimes reduce the readability of the code,
especially for more complex operations.

When to Use Lambda Functions
Lambda functions are ideal for simple, short-term tasks where you need a function quickly without the
overhead of defining a full function using def. Common use cases include:

• Sorting: Sorting data based on a custom key using lambda in sorted().

• Filtering: Filtering data using lambda with filter().

• Mapping: Transforming a collection of data using lambda with map().

• Function Arguments: Passing a simple function as an argument to other functions.

Conclusion
Lambda functions are a powerful feature in Python that allows you to define small, anonymous functions
for short-term use. They are widely used in functional programming techniques and provide a clean,
compact way to write simple functions.

Key Takeaways:

• A lambda function is a small, anonymous function defined using the lambda keyword.

• It can accept multiple arguments but can only contain a single expression.

• Lambda functions are commonly used with Python’s built-in functions like map(), filter(), and
sorted().

• They are concise and useful for simple, one-off operations but should be used judiciously to
maintain code readability.

Now that you have a basic understanding of lambda functions, you can use them to simplify your code,
especially for short-term tasks!

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 70

Arrays in Python
Arrays, also known as lists in Python, allow you to store multiple items in a single variable. They are useful
for handling multiple objects or values in an ordered and repetitive manner. Unlike some other languages,
Python doesn't have a specific native "array" type, but lists serve this purpose with great flexibility.

Creating a List
To create a list, use square brackets [] and separate the items with commas:
List of numbers
numbers = [1, 2, 3, 4, 5]

List of strings
words = ["Python", "is", "fun"]

Lists in Python can store elements of various types, even complex objects:
from pyb import LED
leds = [LED(1), LED(2), LED(3)] # List of LED objects

Loops with Lists
Lists allow easy iteration over their elements using a for loop, simplifying repetitive tasks.

Practical Example: Controlling LEDs with a List

In this example, we use a MicroPython board to turn LEDs on and off. The LED objects are stored in a list,
and a for loop allows controlling each LED easily:
from pyb import LED
import time

Create a list of LEDs
leds = [LED(1), LED(2), LED(3)]

Turn on each LED one by one for half a second
for led in leds:
 led.on()
 time.sleep_ms(500)
 led.off()

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 71

Manipulating Lists
Below are some of the most frequently used methods to manipulate lists:

append()

Adds an element to the end of the list.
leds.append(LED(4)) # Add an extra LED to the list

insert(pos, elem)

Inserts an element at the specified position.
leds.insert(1, LED(5)) # Inserts LED(5) in the second position

pop(pos)

Removes and returns the element at the specified position.
• Positive index: Refers to a position from the beginning of the list (index starts at 0).

leds.pop(0) # Removes the first element of the list

• Negative index: Refers to a position from the end of the list.
leds.pop(-1) # Removes the last element of the list

• Out of bounds: If pos is beyond the valid indices of the list, Python raises an IndexError.

Note: The pop(pos) method removes and returns the item at the given index. If no index is provided, it
removes the last item by default.

Here's an example where we remove the second LED from the list and control it separately:
Remove and control the second LED
led_removed = leds.pop(1) # Removes and returns LED 2
led_removed.on()
time.sleep_ms(1000)
led_removed.off()

In this example, led_removed contains the object corresponding to LED(2), which can be manipulated
separately.

remove(elem)

Removes the first occurrence of the specified element.
leds.remove(LED(2)) # Remove the LED corresponding to LED 2 from the list

clear():

Removes all elements from the list.
leds.clear() # Empties the list

count(elem):

Counts how many times an element appears in the list.
print(leds.count(LED(1))) # Counts occurrences of LED(1)

index(elem)

Returns the index of the first occurrence of the element.
position = leds.index(LED(2)) # Finds the position of LED(2)

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 72

extend(iterable)

Adds multiple elements to the end of the list.
leds.extend([LED(5), LED(6)]) # Adds multiple LEDs

reverse()

Reverses the order of elements in the list.
leds.reverse() # Reverses the order of the list

sort()

Sorts the list in ascending order.
numbers.sort() # Sorts numbers in ascending order

Note: The sort() method can take a key parameter for custom sorting and a reverse=True argument to sort
in descending order.

Practical Example: Manipulating a List of LEDs
Test if an element if present in the list
if LED(1) in leds:
 print("LED 1 is in the list.")

Here’s a detailed example showing how to use various list operations while controlling LEDs on a
Momentum board:
from pyb import LED
import time

Create a list of LEDs
leds = [LED(1), LED(2), LED(3)]

Remove and control the first LED
first_led = leds.pop(0) # Removes the first LED
first_led.on()
time.sleep_ms(500)
first_led.off()

Remove and control the last LED
last_led = leds.pop(-1) # Removes the last LED
last_led.on()
time.sleep_ms(500)
last_led.off()

Add multiple LEDs and reverse their order
leds.extend([LED(3), LED(1)])
leds.reverse()

Blink each LED in the reversed list
for led in leds:
 led.on()
 time.sleep_ms(300)
 led.off()

Clear the list of all LEDs
leds.clear()

Conclusion
Lists are a powerful tool in Python, enabling efficient management of groups of objects or data.
Understanding how to use list methods like append(), insert(), pop(), and sort() allows you to create flexible
and dynamic code. These techniques are particularly useful for hardware projects.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 73

Classes and Objects in Python
In Python, a class is a blueprint or template used to create objects. Objects are instances of a class,
representing concrete entities with attributes (properties) and methods (actions). Classes and objects are
essential for organizing code and managing complexity, particularly in MicroPython projects, such as
controlling hardware or structuring data.

Methods
A method is a function defined inside a class that performs an action related to the class. Methods operate
on the object's data and provide functionality.
class LED:
 def __init__(self, pin):
 from machine import Pin
 self.led = Pin(pin, Pin.OUT)
 self.state = False

 def on(self):
 self.led.value(0)
 self.state = True
 print("LED is ON")

 def off(self):
 self.led.value(1)
 self.state = False
 print("LED is OFF")

 def toggle(self):
 self.state = not self.state
 self.led.value(0 if self.state else 1)
 print(f"LED toggled to {'ON' if self.state else 'OFF'}")

In this example, on, off, and toggle are methods that allow the object LED to perform specific actions.

self
The keyword self represents the current instance of the class. It is used to access the attributes and
methods of the object. All instance methods must include self as their first parameter.

class Example:
 def __init__(self, value):
 self.value = value # Attribute tied to the current object

 def show_value(self):
 print(f"The value is {self.value}") # Using self

The Special Method __str__()
The __str__() method is called when you try to display an object with print() or convert it to a string. It allows
you to define a human-readable representation of the object.
class LED:
 def __init__(self, pin):
 self.pin = pin
 self.state = False

 def __str__(self):
 return f"LED on pin {self.pin}, state: {'ON' if self.state else 'OFF'}"

Usage:
led = LED("C0")
print(led) # Output: LED on pin C0, state: OFF
led.state = True
print(led) # Output: LED on pin C0, state: ON

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 74

Deleting a Method with del
In Python, you can dynamically delete a method or modify the behavior of objects. However, deleting
methods is rarely needed and is generally not a common practice in MicroPython due to resource
constraints.
class DynamicClass:
 def method1(self):
 print("Method1 exists.")

 def method2(self):
 print("Method2 exists.")

obj = DynamicClass()
obj.method1() # Output: Method1 exists.
del obj.method1 # Deletes method1
obj.method1() # Raises AttributeError: method1 no longer exists

Deleting an Object with del
In MicroPython, you can use del to delete a reference to an object and free up memory. However, unlike
standard Python, MicroPython does not implement the special __del__() method for performing actions
when an object is deleted. Instead, memory management is handled by the garbage collector. If you need
to clean up resources, you should implement explicit cleanup methods.

Example without __del__ in MicroPython
class LED:
 def __init__(self, pin):
 from machine import Pin
 self.pin = pin
 self.led = Pin(pin, Pin.OUT)
 self.state = False
 print(f"LED on pin {self.pin} initialized.")

 def on(self):
 self.led.value(0)
 self.state = True
 print(f"LED on pin {self.pin} is ON.")

 def off(self):
 self.led.value(1)
 self.state = False
 print(f"LED on pin {self.pin} is OFF.")

 def cleanup(self):
 """Explicit cleanup method for releasing resources."""
 self.off()
 print(f"LED on pin {self.pin} cleaned up.")

 def __str__(self):
 return f"LED(pin={self.pin}, state={'ON' if self.state else 'OFF'})"

Usage:
led = LED("C0") # Initializes the LED object on pin C0 (RED)
print(led) # Displays the object state
led.on() # Turns the LED on
led.cleanup() # Explicitly cleans up the object
del led # Deletes the reference; no destructor is called

Key Takeaways for MicroPython
The __del__() method is not implemented. Use explicit cleanup methods, such as cleanup(), to release
resources before deleting an object. Concepts like methods, self, and __str__() remain important for
structuring your code and improving readability in resource-constrained environments.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 75

Understanding Inheritance in Python
Inheritance is a fundamental concept in object-oriented programming (OOP) that allows a class (called a
child class) to inherit attributes and methods from another class (called a parent class). This promotes
code reuse and allows you to extend or modify the functionality of existing classes.

What is Inheritance?
In Python, inheritance allows a class to use the properties and behaviors of another class while introducing
its own unique features.

The parent class is also known as the base class, and the child class is called the derived class.

Syntax of Inheritance
To create a child class, you include the parent class in parentheses after the name of the child class:
class Parent:
 # Parent class with common attributes and methods
 pass

class Child(Parent):
 # Child class that inherits from Parent
 pass

The child class automatically inherits all the methods and attributes of the parent class, and you can also
add new ones or override the existing ones.

Basic Inheritance
class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 print(f"{self.name} makes a sound.")

class Dog(Animal): # Dog inherits from Animal
 def speak(self):
 print(f"{self.name} barks!")

Usage:
generic_animal = Animal("Generic Animal")
generic_animal.speak() # Output: Generic Animal makes a sound.

dog = Dog("Buddy")
dog.speak() # Output: Buddy barks!

Here:

• The Dog class inherits the __init__ method from Animal.

• The Dog class overrides the speak method to provide specific behavior for dogs.

Using super() to Extend Parent Behavior
The super() function allows the child class to call a method from the parent class. This is useful when you
want to retain the parent class's behavior while adding new functionality.
class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 print(f"{self.name} makes a sound.")

class Cat(Animal): # Cat inherits from Animal

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 76

 def __init__(self, name, color):
 super().__init__(name) # Call the parent class's __init__
 self.color = color

 def speak(self):
 super().speak() # Call the parent class's speak method
 print(f"{self.name} meows!")

Usage:
cat = Cat("Whiskers", "black")
print(cat.color) # Output: black
cat.speak()
Output:
Whiskers makes a sound.
Whiskers meows!

Inheritance in MicroPython
Inheritance is also useful in MicroPython to create modular and reusable code for hardware devices. Here's
an example:
class LED:
 def __init__(self, pin):
 from machine import Pin
 self.pin = Pin(pin, Pin.OUT)
 self.state = False

 def on(self):
 self.pin.value(0)
 self.state = True

 def off(self):
 self.pin.value(1)
 self.state = False

class BlinkingLED(LED): # Inherits from LED
 def __init__(self, pin, duration):
 super().__init__(pin)
 self.duration = duration

 def blink(self):
 import time
 print(f"Blinking LED on pin {self.pin} for {self.duration} seconds.")
 self.on()
 time.sleep(self.duration)
 self.off()

Usage:
led = BlinkingLED("C0", 3) # Blinking LED on GPIO pin C0 with a duration of 3 second
led.blink()

Key Points About Inheritance
1. Reusability: Inheritance lets you reuse code from a parent class in the child class, reducing

duplication.

2. Extensibility: You can add new functionality or override existing methods in the child class.

3. super(): The super() function allows you to call the parent class's methods explicitly.

4. Multiple Inheritance: Python supports multiple inheritance (a class can inherit from more than
one parent), but it should be used carefully to avoid complexity.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 77

Summary
Inheritance is a powerful tool that lets you create hierarchies of classes. It simplifies code by promoting
reuse and reducing duplication. In MicroPython, it can help organize code for hardware components like
sensors and actuators, making your programs cleaner and easier to maintain. By mastering inheritance,
you unlock new possibilities for structuring efficient, scalable, and reusable code.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 78

Understanding Iterators in Python
An iterator is a fundamental concept in Python that allows you to traverse through a sequence of data, such
as a list, tuple, or string, one element at a time. Iterators provide a way to access the elements of a collection
without exposing the underlying structure.

What is an Iterator?
An iterator is an object that implements two special methods:

1. __iter__(): Returns the iterator object itself.

2. __next__(): Returns the next item in the sequence. If no items are left, it raises a StopIteration
exception.

Built-in Iterators
Python provides built-in iterators for collections like lists, tuples, and strings.
Example: Using an iterator with a list
my_list = [1, 2, 3, 4]

Get an iterator object
iterator = iter(my_list)

Use the next() function to retrieve elements one at a time
print(next(iterator)) # Output: 1
print(next(iterator)) # Output: 2
print(next(iterator)) # Output: 3
print(next(iterator)) # Output: 4

If we call next() again, it will raise StopIteration
print(next(iterator)) # Raises StopIteration

Creating a Custom Iterator
You can create your own iterator by defining a class that implements __iter__() and __next__().
class Counter:
 def __init__(self, start, end):
 self.current = start
 self.end = end

 def __iter__(self):
 return self # The iterator object returns itself

 def __next__(self):
 if self.current > self.end:
 raise StopIteration # Stop iteration when the end is reached
 self.current += 1
 return self.current - 1

Usage:
counter = Counter(1, 5)
for num in counter:
 print(num)
Output:
1
2
3
4
5

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 79

Infinite Iterators
Iterators can also represent infinite sequences. Be cautious when using them, as they do not stop
automatically.
class InfiniteCounter:
 def __init__(self, start=0):
 self.current = start

 def __iter__(self):
 return self

 def __next__(self):
 self.current += 1
 return self.current

Usage:
infinite_counter = InfiniteCounter()
for num in infinite_counter:
 print(num)
 if num == 5: # Break manually to prevent an infinite loop
 break
Output:
1
2
3
4
5

Iterators in MicroPython
Iterators are especially useful in MicroPython for handling hardware components efficiently. For example,
you can create an iterator to read sensor data multiple times.
class SensorReader:
 def __init__(self, sensor, readings):
 self.sensor = sensor
 self.readings = readings
 self.count = 0

 def __iter__(self):
 return self

 def __next__(self):
 if self.count >= self.readings:
 raise StopIteration
 self.count += 1
 return self.sensor.read() # Example: Read sensor data

Mock sensor example
class MockSensor:
 def read(self):
 import random
 return random.randint(0, 100)

sensor = MockSensor()
reader = SensorReader(sensor, 5)

for data in reader:
 print(f"Sensor reading: {data}")
Output: 5 random sensor readings

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 80

Key Points About Iterators
1. Lazy Evaluation: Iterators compute values one at a time, making them memory efficient for large

datasets.

2. Custom Iterators: You can create your own iterators to define custom traversal logic.

3. for Loop Compatibility: Iterators integrate seamlessly with Python's for loop.

4. StopIteration: Always raise StopIteration when there are no more items to iterate.

Summary
Iterators are a versatile tool for accessing and processing data in Python. They provide a memory-efficient
way to work with sequences, especially in resource-constrained environments like MicroPython. By
mastering iterators, you can write cleaner and more efficient code for both everyday programming tasks
and hardware interaction.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 81

Understanding Polymorphism in Python
Polymorphism is a key principle in object-oriented programming that allows a single interface to interact
with objects of different types. This means methods, functions, or operations can behave differently
depending on the object they are acting upon, making your code more flexible and reusable.

What is Polymorphism?
The term polymorphism means "many forms." In Python, polymorphism enables the same method name
to work in different ways depending on the object that uses it. Polymorphism is most commonly achieved
through:

1. Method Overriding: Subclasses provide their own implementation of methods defined in a
parent class.

2. Duck Typing: Objects are used based on their behavior (methods and properties), not their type.

Polymorphism with Method Overriding in Inheritance
In this example, a parent class defines a general method, and subclasses override it to provide specific
implementations.

class Vehicle:
 def description(self):
 return "This is a generic vehicle."

class Car(Vehicle):
 def description(self):
 return "This is a car. It has 4 wheels."

class Bike(Vehicle):
 def description(self):
 return "This is a bike. It has 2 wheels."

Usage:
vehicles = [Car(), Bike(), Vehicle()]
for vehicle in vehicles:
 print(vehicle.description())
Output:
This is a car. It has 4 wheels.
This is a bike. It has 2 wheels.
This is a generic vehicle.

Here:
• The description method in the Vehicle class is overridden in Car and Bike.

• Polymorphism allows the same method name to exhibit different behavior based on the object.

Polymorphism in Functions
A function can accept objects of different classes that share a common method.

class Circle:
 def __init__(self, radius):
 self.radius = radius

 def area(self):
 return 3.14 * self.radius ** 2

class Rectangle:
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def area(self):

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 82

 return self.width * self.height

Function leveraging polymorphism
def display_area(shape):
 print(f"The area is: {shape.area()}")

Usage:
shapes = [Circle(5), Rectangle(4, 6)]
for shape in shapes:
 display_area(shape)
Output:
The area is: 78.5
The area is: 24

Polymorphism in MicroPython with Inheritance
In MicroPython, polymorphism is especially useful for handling hardware components that share similar
behavior but have unique implementations.

class Device:
 def on(self):
 raise NotImplementedError("Subclasses must implement the 'on' method.")

 def off(self):
 raise NotImplementedError("Subclasses must implement the 'off' method.")

class LED(Device):
 def __init__(self, pin):
 from machine import Pin
 self.led = Pin(pin, Pin.OUT)

 def on(self):
 self.led.value(0)
 print("LED is ON.")

 def off(self):
 self.led.value(1)
 print("LED is OFF.")

class Buzzer(Device):
 def __init__(self, pin):
 from machine import Pin
 self.buzzer = Pin(pin, Pin.OUT)

 def on(self):
 self.buzzer.value(1)
 print("Buzzer is ON.")

 def off(self):
 self.buzzer.value(0)
 print("Buzzer is OFF.")

Function leveraging polymorphism
def control_device(device, action):
 if action == "on":
 device.on()
 elif action == "off":
 device.off()

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 83

Usage:
devices = [LED(2), Buzzer(3)]
for device in devices:
 control_device(device, "on")
 control_device(device, "off")
Output:
LED is ON.
LED is OFF.
Buzzer is ON.
Buzzer is OFF.

Here:

• The Device parent class defines a common interface with on and off methods.

• LED and Buzzer provide their own implementations of these methods.

• Polymorphism allows the control_device function to operate on any Device-type object.

Duck Typing in Python
Duck typing in Python emphasizes behavior over type. If an object implements the required method, it can
be used regardless of its class.

class Bird:
 def fly(self):
 print("The bird is flying.")

class Airplane:
 def fly(self):
 print("The airplane is flying.")

Function leveraging duck typing
def perform_flight(entity):
 entity.fly()

Usage:
entities = [Bird(), Airplane()]
for entity in entities:
 perform_flight(entity)
Output:
The bird is flying.
The airplane is flying.

Key Benefits of Polymorphism
1. Flexibility: Functions and methods can work seamlessly with objects of different classes.

2. Code Reusability: Shared interfaces allow generic functions and methods to be reused.

3. Extensibility: Adding new object types with shared behavior doesn’t require modifying existing
code.

Summary
Polymorphism is a versatile feature of object-oriented programming that enhances flexibility, reusability,
and scalability. By using a common interface across different classes, you can design cleaner, more
maintainable code. In Python and MicroPython, polymorphism is especially useful for handling hardware
components or modeling systems with shared but customizable behaviors.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 84

Modules in Python
Modules are one of the most powerful features in Python. They allow you to organize your code into smaller,
reusable components. A module is simply a file containing Python definitions and statements, such as
functions, variables, or classes. By using modules, you can write cleaner and more maintainable code.

Why Use Modules?
1. Code Organization: Splitting your program into multiple files makes it easier to read and manage.

2. Reusability: Modules allow you to reuse code across multiple projects or programs.

3. Namespace Management: Modules provide separate namespaces to avoid naming conflicts.

4. Access to Built-in Modules: Python comes with a rich standard library of pre-built modules to
extend your code's functionality.

Using a Module
You can import a module into your program using the import statement. Once imported, you can access its
components with the syntax module_name.component.

Example 1: Importing a Built-in Module
import math

Using the math module
radius = 5
area = math.pi * radius ** 2
print(f"The area of the circle is {area}")
Output: The area of the circle is 78.53981633974483

Here: The math module provides mathematical functions like pi and sqrt.

Example 2: Importing Specific Components

Instead of importing the entire module, you can import only what you need.
from math import sqrt

print(sqrt(16)) # Output: 4.0

Creating Your Own Module
You can create a custom module by saving your Python code in a .py file.

Example: Custom Module

Create a file named mymodule.py:
mymodule.py
def greet(name):
 return f"Hello, {name}!"

PI = 3.14159

Now, import and use it in another Python file:
import mymodule

print(mymodule.greet("Alice")) # Output: Hello, Alice!
print(mymodule.PI) # Output: 3.14159

MicroPython Modules
In MicroPython, you can use modules for working with hardware and other functionalities. MicroPython also
supports custom modules for embedded systems.
Example: Using a MicroPython Built-in Module

from machine import Pin

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 85

led = Pin("C0", Pin.OUT) # Initialize a pin for LED
led.value(1) # Turn the LED on

Here: The machine module provides access to hardware components.

Custom MicroPython Module
Create a file named led_control.py:
from machine import Pin

class LED:
 def __init__(self, pin):
 self.led = Pin(pin, Pin.OUT)

 def on(self):
 self.led.value(0)
 print("LED is ON.")

 def off(self):
 self.led.value(1)
 print("LED is OFF.")

Use it in another script:
import led_control

my_led = led_control.LED("C0")
my_led.on() # LED is ON.
my_led.off() # LED is OFF.

Managing Module Imports
Python provides various ways to control module imports:

Renaming Modules: Use the as keyword to give an imported module a different name.
import math as m

print(m.sqrt(9)) # Output: 3.0

Importing All Components: Use * to import all components of a module.
from math import *

print(sin(0)) # Output: 0.0

Note: This is generally discouraged as it can lead to naming conflicts.

Checking Available Modules: Use the help('modules') command in the Python REPL to list available
modules.

Key Benefits of Using Modules
1. Reduces Redundancy: Write code once and reuse it multiple times.

2. Improves Maintenance: Debugging and updating modular code is easier.

3. Facilitates Collaboration: Teams can work on different modules simultaneously.

Summary
Modules are essential for building scalable and maintainable Python programs. They allow you to organize
code, reuse components, and leverage Python's extensive standard library. In MicroPython, modules play
a critical role in accessing hardware and implementing custom features for embedded systems. By
mastering modules, you can create efficient, clean, and reusable Python code for any project!

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 86

Using the math Module
The math module in MicroPython provides a set of mathematical functions that are useful for a wide range
of applications, from simple arithmetic to more advanced scientific calculations. Since MicroPython is
optimized for resource-constrained environments, the math module is lightweight and focused on essential
mathematical operations.

Why Use the math Module?
The math module helps you:

1. Perform complex mathematical calculations easily.
2. Access common constants like π (pi) and e (Euler's number).
3. Use advanced functions like trigonometry, logarithms, and square roots.

To use the math module, you need to import it:
import math

Key Features of the math Module
Mathematical Constants

The module provides two commonly used constants:
• math.pi: The value of π (3.14159...).
• math.e: Euler’s number (2.71828...).

Example:
import math

print("Value of pi:", math.pi) # Output: 3.141592653589793
print("Value of e:", math.e) # Output: 2.718281828459045

Basic Functions
• math.sqrt(x): Returns the square root of x.
• math.pow(x, y): Computes x raised to the power of y.
• math.ceil(x): Rounds x up to the nearest integer.
• math.floor(x): Rounds x down to the nearest integer.
• math.fabs(x): Returns the absolute value of x.

Example:
import math

print("Square root of 16:", math.sqrt(16)) # Output: 4.0
print("3 raised to the power 4:", math.pow(3, 4)) # Output: 81.0
print("Ceil of 3.7:", math.ceil(3.7)) # Output: 4
print("Floor of 3.7:", math.floor(3.7)) # Output: 3
print("Absolute value of -7:", math.fabs(-7)) # Output: 7.0

Trigonometric Functions

The math module includes trigonometric functions for angles in radians:
• math.sin(x): Computes the sine of x.
• math.cos(x): Computes the cosine of x.
• math.tan(x): Computes the tangent of x.
• math.radians(deg): Converts degrees to radians.
• math.degrees(rad): Converts radians to degrees.

Example:
import math

angle_deg = 45
angle_rad = math.radians(angle_deg)

print("Sine of 45°:", math.sin(angle_rad)) # Output: 0.7071067811865475
print("Cosine of 45°:", math.cos(angle_rad)) # Output: 0.7071067811865476

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 87

print("Tangent of 45°:", math.tan(angle_rad)) # Output: 1.0

Logarithmic and Exponential Functions
• math.log(x): Returns the natural logarithm (base e) of x.
• math.log10(x): Returns the logarithm of x to base 10.
• math.exp(x): Returns e raised to the power of x.

import math

print("Natural log of 10:", math.log(10)) # Output: 2.302585092994046
print("Log base 10 of 1000:", math.log10(1000)) # Output: 3.0
print("e^3:", math.exp(3)) # Output: 20.085536923187668

Other Functions
• math.modf(x): Splits x into its fractional and integer parts.
• math.hypot(x, y): Computes the Euclidean distance from the origin to the point (x, y)

(i.e., sqrt(x² + y²)).
import math

def hypot(x, y):
 return math.sqrt(x**2 + y**2)

print("Fractional and integer parts of 5.75:", math.modf(5.75)) # Output: (0.75, 5.0)
print("Hypotenuse of a triangle with sides 3 and 4:", hypot(3, 4)) # Output: 5.0

Application Example in MicroPython
Example: Calculating LED Brightness with PWM

You can use the math module to create a sine wave for controlling the brightness of an LED.
from pyb import Pin, Timer
import math
import time

Configure the pin for PWM (LED red)
pin = Pin('C0', Pin.OUT)

Initialize PWM using a timer
timer = Timer(1, freq=1000) # Timer 1 at 1 kHz
pwm = timer.channel(1, Timer.PWM, pin=pin)

Create a sine wave for brightness control
while True:
 for i in range(0, 360, 10): # Degrees from 0 to 360
 # Calculate brightness as a sine wave scaled to 0-100%
 brightness = (math.sin(math.radians(i)) + 1) * 50 # Scale to 0-100
 pwm.pulse_width_percent(brightness) # Set PWM duty cycle
 time.sleep(0.05) # Wait for 50 ms

Limitations in MicroPython
While the math module in MicroPython provides many useful functions, it might not include advanced
functions available in standard Python. Always consult the MicroPython documentation to check
supported features.

Summary
The math module is a crucial tool for performing mathematical calculations in MicroPython. It offers:

1. Basic arithmetic functions.
2. Trigonometric calculations.
3. Logarithmic and exponential operations.
4. Constants like π and e.

Understanding how to use the math module can simplify your tasks and help you build efficient
applications, especially in resource-constrained environments like MicroPython.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 88

Handling Exceptions
In embedded application development, proper error handling is crucial for ensuring system reliability.
MicroPython, like Python, uses exceptions to signal and handle errors. This chapter will explore how to use
exceptions on a Pyboard to make your programs more robust.

What is an Exception?
An exception is an interruption in the normal flow of a program caused by an error. For example:

• A file not found.
• Division by zero.
• An attempt to access an unconnected peripheral.

MicroPython raises exceptions to signal these issues. You can catch and handle them to prevent your
program from crashing.

Basic Exception Handling Structure
Exception handling in MicroPython follows this structure:
try:
 # Code that might raise an exception
 x = 10 / 0
except ZeroDivisionError:
 # Code executed if a "ZeroDivisionError" is raised
 print("Error: Division by zero is not allowed.")
finally:
 # Code that always executes, regardless of an exception
 print("Processing complete.")

Explanation of the blocks:
• try: Contains the code to monitor for exceptions.
• except: Contains the code executed if a specific error occurs.
• finally (optional): Contains the code executed no matter what, useful for releasing resources.

Common Exceptions in MicroPython on a Pyboard
Here are some common errors and how to handle them:

File Access Error

If you attempt to open a file that doesn’t exist, an OSError will be raised.
try:
 with open("nonexistent_file.txt", "r") as file:
 content = file.read()
except OSError:
 print("Error: The file is not accessible or does not exist.")

Device Error

If you attempt to read from an unconnected sensor, an exception might be raised.
from pyb import ADC

try:
 adc = ADC(1) # ADC channel 1
 value = adc.read()
 print("ADC Value:", value)
except ValueError:
 print("Error: The specified ADC channel is invalid.")

Memory Error

On embedded systems, excessive memory allocation may raise a MemoryError.
try:
 data = [0] * (10**6) # Attempt to allocate a large array
except MemoryError:
 print("Error: Not enough memory to complete this operation.")

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 89

Raising Custom Exceptions
You can raise your own exceptions using raise.
def divide(a, b):
 if b == 0:
 raise ValueError("Error: Division by zero.")
 return a / b

try:
 result = divide(10, 0)
except ValueError as e:
 print(e)

Best Practices
1. Catch only specific exceptions

Avoid catching all exceptions with a generic except: block, except for temporary debugging.
2. Release resources in finally

Use this block to close files or disable devices.
3. Provide clear error messages

Clear messages help identify the type and source of an error during debugging.
4. Test your program with error scenarios

Simulate errors to verify that your exception handling works as intended.

Complete Example
Here is a complete example combining multiple concepts for a Pyboard program:
from pyb import LED

def turn_on_led(number):
 if number not in range(1, 4):
 raise ValueError("Invalid LED number. Choose between 1 and 3.")
 led = LED(number)
 led.on()

try:
 turn_on_led(4) # Invalid number
except ValueError as e:
 print("Error detected:", e)
finally:
 print("Program finished.")

Conclusion
Exception handling is a powerful tool for making your MicroPython applications more reliable, even on
constrained platforms like the Pyboard. By following best practices and anticipating potential errors, you
can prevent unexpected failures and improve the overall quality of your projects.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 90

Using input()
In MicroPython, the input() function allows programs to receive textual input from a user. This function is
particularly useful for interactive scripts running in a terminal. While it is not typically used in standalone
embedded systems, it is a valuable tool when your MicroPython board is connected to a computer via a
serial terminal. In this chapter, we will explore how to use input() in MicroPython, its limitations, and some
practical examples.

What is the input() Function?
The input() function in MicroPython is used to capture user input as a string from the serial terminal. When
called, it pauses the program and waits for the user to type something and press Enter. The entered text is
then returned as a string.

Syntax:
user_input = input("Prompt message: ")

"Prompt message": A string displayed to the user to indicate what kind of input is expected.

user_input: The variable that stores the entered text.

Basic Usage of input()
Here is a simple example of using input() to get user input:
Asking for the user's name
name = input("Enter your name: ")
print(f"Hello, {name}!")

Example Output:
Enter your name: Alice
Hello, Alice!

In this example, the program waits for the user to type their name and press Enter. The entered name is then
printed back to the user.

Converting User Input
The input() function always returns a string. To use the input as a number or in calculations, you must
convert it to the appropriate type (e.g., int or float).

Example: Converting Input to an Integer
Asking for a number and performing calculations
number = int(input("Enter a number: "))
print(f"The square of {number} is {number ** 2}")

Example Output:
Enter a number: 4
The square of 4 is 16

Handling Non-Numeric Input

If the user enters a non-numeric value when converting input, a ValueError will be raised. You can handle
this with a try-except block:
try:
 number = int(input("Enter a number: "))
 print(f"The square of {number} is {number ** 2}")
except ValueError:
 print("Error: Please enter a valid number.")

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 91

Using input() for Menu Systems
You can use input() to create simple text-based menu systems. This is useful for debugging or providing
interactive controls.

Example: A Simple Menu
while True:
 print("\nMenu:")
 print("1. Say Hello")
 print("2. Add Two Numbers")
 print("3. Exit")

 choice = input("Choose an option: ")

 if choice == "1":
 print("Hello!")
 elif choice == "2":
 a = int(input("Enter the first number: "))
 b = int(input("Enter the second number: "))
 print(f"The sum of {a} and {b} is {a + b}")
 elif choice == "3":
 print("Exiting the program. Goodbye!")
 break
 else:
 print("Invalid option. Please try again.")

Example Output:
Menu:
1. Say Hello
2. Add Two Numbers
3. Exit
Choose an option: 1
Hello!

Menu:
1. Say Hello
2. Add Two Numbers
3. Exit
Choose an option: 3
Exiting the program. Goodbye!

Limitations of input() in MicroPython
1. Terminal Dependency: The input() function requires the board to be connected to a serial

terminal. It cannot be used in standalone applications without a terminal.
2. Blocking Nature: The program pauses execution until the user provides input. This can make it

unsuitable for real-time applications.
3. No Timeout: The input() function does not support a timeout. If no input is provided, the program

will wait indefinitely.

Alternatives to input()
For standalone systems without a terminal, consider using other methods for user interaction, such as:

• Physical buttons connected to GPIO pins.
• Serial communication via UART.
• External peripherals like keypads.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 92

Practical Example: Combining input() and GPIO Control
The following example demonstrates how to use input() to control an LED connected to Momentum board.
from pyb import LED

LED Control Program
led = LED(1) # Use LED 1 on the Momentum board

while True:
 print("\nLED Control:")
 print("1. Turn ON the LED")
 print("2. Turn OFF the LED")
 print("3. Exit")

 choice = input("Enter your choice: ")

 if choice == "1":
 led.on()
 print("LED is ON.")
 elif choice == "2":
 led.off()
 print("LED is OFF.")
 elif choice == "3":
 print("Exiting the program. Goodbye!")
 break
 else:
 print("Invalid choice. Please try again.")

Best Practices for Using input()
1. Validate User Input: Always check that the user has entered valid data to avoid errors.
2. Provide Clear Prompts: Use descriptive messages to guide the user on what input is expected.
3. Handle Exceptions: Use try-except blocks to manage errors gracefully, such as invalid

conversions.
4. Avoid Overuse in Real-Time Systems: Since input() blocks the program, it may not be suitable

for time-sensitive tasks.

Conclusion
The input() function is a powerful tool in MicroPython for receiving user input when working with a serial
terminal. It is ideal for debugging, creating interactive scripts, or simple menu-driven applications.
However, its limitations make it less suitable for standalone or real-time embedded systems. By combining
input() with other MicroPython features, you can create versatile and interactive applications.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 93

File Manipulation in MicroPython
File manipulation is a core functionality in MicroPython, enabling you to store, retrieve, and modify data on
a storage medium like an SD card or the internal filesystem. This chapter provides a comprehensive guide
to handling files in MicroPython, covering basic operations, common pitfalls, and best practices.

The Filesystem in MicroPython
MicroPython includes a minimal filesystem that allows you to work with files similarly to Python on desktop
systems. Common storage options include:

• Internal flash memory: Used for storing scripts and configuration files.
• SD card: For additional or removable storage.

On a Momentum board, the filesystem is mounted automatically, and you can access it via a terminal or
programming.

Opening and Closing Files
Files in MicroPython are opened using the open() function. You specify the file path and mode (e.g., read,
write).

Syntax:
file = open("filename.txt", mode)

Common Modes:
• 'r': Read-only (default).
• 'w': Write (overwrites the file if it exists).
• 'a': Append (adds to the file without overwriting).
• 'r+': Read and write.
• 'b': Binary mode (e.g., 'rb' for reading binary data).

Example: Opening and Closing a File
file = open("example.txt", "w")
file.write("Hello, MicroPython!") # Write to the file
file.close() # Always close the file

Best Practice: Use a with statement to handle files, as it automatically closes the file when done.
with open("example.txt", "w") as file:
 file.write("Hello, MicroPython!")

Writing to a File
You can write data to a file using the write() or writelines() methods.

Example: Writing Text to a File
with open("data.txt", "w") as file:
 file.write("Line 1\n")
 file.write("Line 2\n")

Example: Writing Multiple Lines
lines = ["Line A\n", "Line B\n", "Line C\n"]
with open("data.txt", "w") as file:
 file.writelines(lines)

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 94

Reading from a File
You can read data from a file using read(), readline(), or readlines().

Example: Reading Entire Content
with open("data.txt", "r") as file:
 content = file.read()
 print(content)

Example: Reading Line by Line
with open("data.txt", "r") as file:
 for line in file:
 print(line.strip()) # Remove newline characters

Example: Reading a Single Line
with open("data.txt", "r") as file:
 first_line = file.readline()
 print(first_line)

Appending to a File
Use the 'a' mode to append content to an existing file.

Example: Appending Data
with open("data.txt", "a") as file:
 file.write("Appended Line\n")

Checking if a File Exists
Before accessing a file, it’s good practice to check if it exists to avoid errors. Use the os module.

Example: Checking File Existence
import os

try:
 os.stat("data.txt") # Raises an OSError if the file does not exist
 print("File exists!")
except OSError:
 print("File does not exist.")

Deleting or Renaming Files
The os module provides methods to manage files.

Example: Deleting a File
import os

os.remove("data.txt") # Deletes the file

Example: Renaming a File
import os

os.rename("old_name.txt", "new_name.txt") # Renames the file

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 95

Working with Directories
The os module also allows directory manipulation.

Example: Listing Files in a Directory
import os

files = os.listdir() # Lists all files and directories
print(files)

Example: Creating and Removing Directories
os.mkdir("new_folder") # Creates a new directory
os.rmdir("new_folder") # Removes an empty directory

Binary File Operations
To work with non-text data (e.g., images or sensor logs), open files in binary mode.

Example: Writing and Reading Binary Data
Writing binary data
with open("binary.dat", "wb") as file:
 file.write(b'\x01\x02\x03\x04') # Write bytes

Reading binary data
with open("binary.dat", "rb") as file:
 data = file.read()
 print(data) # Output: b'\x01\x02\x03\x04'

Handling File Errors
File operations can fail due to reasons like missing files or insufficient storage. Use try-except blocks to
handle such errors gracefully.

Example: Handling Errors
try:
 with open("nonexistent.txt", "r") as file:
 content = file.read()
except OSError as e:
 print(f"File error: {e}")

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 96

Practical Example: Logging Data to a File
Here’s a practical example where data from a sensor is logged to a file.
from pyb import ADC, delay

Configure ADC
adc = ADC("A1")

Log data to a file
with open("sensor_log.txt", "w") as file:
 for _ in range(10): # Collect 10 samples
 value = adc.read() # Read ADC value
 file.write(f"{value}\n") # Write value to the file
 delay(1000) # Wait 1 second
print("Data logging complete.")

Best Practices for File Manipulation
1. Use with Statements: Ensures proper file closure.
2. Validate File Operations: Check for file existence or write permissions.
3. Minimize File Access: Reduce unnecessary reads/writes to prolong flash memory life.
4. Handle Errors Gracefully: Use exception handling for robust applications.
5. Clean Up: Delete or move temporary files after use.

Conclusion
File manipulation in MicroPython allows you to manage data efficiently on embedded systems. From basic
read/write operations to advanced logging and binary handling, these capabilities are essential for many
applications. By following best practices, you can create robust programs that handle files reliably, even in
resource-constrained environments.

This work is licensed under CC BY-NC-ND 4.0

4.0. copyofthilicense,vhttps://creativecommons.org/licenses/by-nc-nd/4.0/

 97

	Introduction
	Description
	Features
	Microcontroller
	Memories
	Pins
	Peripherals
	Communication
	Debug port
	Power
	User Interface

	Pinout diagram
	Operating conditions
	Flash MicroPython Firmware
	Installing STM32CubeProgrammer
	Download the STM32CubeProgrammer
	Install the Software
	Verify Installation

	Preparing the MOMENTUM-M401
	Connect the USB Cable
	Enter Bootloader Mode

	Flashing the Firmware
	Testing the Firmware

	Using MicroPython
	What is MicroPython ?
	Installing tools
	Let's start
	Indentation in Python
	What is indentation ?
	Why do we need indentation ?

	Adding comments in Python
	Single-line comments
	Multi-line comments

	Understanding variables
	What is a variable ?
	How to create a variable ?
	Naming variables
	Changing the value of a variable
	Types of data stored in variables
	Reassigning variables
	Casting
	Get the type
	Explanation
	Examples

	Scope of a variable
	Local variable
	Global variables
	Modifying Global Variables Inside a Function

	Conclusion

	Strings
	Examples
	When to use single or double quotes
	Key takeaways
	Multiline string assignment
	Key points to remember

	Booleans
	Examples
	Summary

	Operators
	Types of Python Operators
	Examples
	Summary

	Lists
	Overview
	Key Features of Lists
	Creating Lists
	Using the List Constructor
	Accessing List Elements
	By Index
	Negative Indexing
	Slicing

	Modifying Lists
	Adding Elements
	Removing Elements

	Iterating Over Lists
	Common List Methods
	Use Cases

	Tuples
	Overview
	Key Features of Tuples
	Creating Tuples
	Without Parentheses
	Accessing Tuple Elements
	By Index
	Negative Indexing
	Slicing

	Tuple Operations
	Concatenation
	Repetition
	Membership

	Immutable Nature of Tuples
	Common Tuple Methods
	Use Cases

	Python Sets
	Overview
	Key features of sets
	Creating sets
	Using the set() constructor
	Accessing Set Elements
	Modifying Sets
	Adding Elements
	Removing Elements

	Set Operations
	Union
	Intersection
	Difference
	Symmetric Difference
	Subset and Superset

	Common Set Methods
	Use Cases

	Python Dictionaries
	Overview
	Key features of dictionaries
	Creating dictionaries
	Using the dict() constructor
	Syntax of the dict() constructor
	Accessing dictionary elements
	Accessing values by keys
	Using get()

	Modifying Dictionaries
	Adding or Updating Key-Value Pairs
	Removing Elements

	Dictionary Methods
	Commonly Used Methods

	Iterating Through a Dictionary
	Use Cases

	If..else Statements
	Introduction
	The if statement
	The else statement
	The elif statement
	Nested Conditions
	Comparison Operators
	Logical Operators
	Conclusion

	The pass statement
	Another Example with Future Code
	Conclusion

	While Loops in Python
	Introduction
	The syntax of a while loop
	Infinite Loops
	Stopping an Infinite Loop

	The else Clause in a while Loop
	Controlling the flow with break, continue, and pass
	The break Statement
	The continue Statement
	The pass Statement

	Nested while Loops
	Conclusion

	The for Loop in Python
	Introduction
	The Syntax of a for Loop
	The range() Function
	Iterating Over Strings
	Iterating Over Dictionaries
	Nested for Loops
	The else Clause in a for Loop
	The continue Statement
	Conclusion

	Functions in Python
	Introduction
	Defining a Function
	Calling the Function:

	Functions with Parameters
	Returning Values from Functions
	Default Parameters
	Keyword Arguments
	Variable Scope in Functions
	Variable-Length Arguments
	Recursive Functions
	Example: Factorial Function (Recursive)
	Important Points About Recursion:

	Conclusion

	Lambda Functions
	Introduction
	Syntax of Lambda Functions
	Lambda Functions with Multiple Arguments
	Using Lambda Functions with Built-in Functions
	Example: Using map() with Lambda
	Example: Using filter() with Lambda
	Example: Using sorted() with Lambda

	Lambda Functions for Simple Operations
	Advantages of Lambda Functions
	Limitations of Lambda Functions
	When to Use Lambda Functions
	Conclusion

	Arrays in Python
	Creating a List
	Loops with Lists
	Practical Example: Controlling LEDs with a List

	Manipulating Lists
	append()
	insert(pos, elem)
	pop(pos)
	remove(elem)
	clear():
	index(elem)
	extend(iterable)
	reverse()
	sort()

	Practical Example: Manipulating a List of LEDs
	Conclusion

	Classes and Objects in Python
	Methods
	self
	The Special Method __str__()
	Deleting a Method with del
	Deleting an Object with del
	Example without __del__ in MicroPython
	Key Takeaways for MicroPython

	Understanding Inheritance in Python
	What is Inheritance?
	Syntax of Inheritance
	Basic Inheritance
	Using super() to Extend Parent Behavior
	Inheritance in MicroPython
	Key Points About Inheritance
	Summary

	Understanding Iterators in Python
	What is an Iterator?
	Built-in Iterators
	Creating a Custom Iterator
	Infinite Iterators
	Iterators in MicroPython
	Key Points About Iterators
	Summary

	Understanding Polymorphism in Python
	What is Polymorphism?
	Polymorphism with Method Overriding in Inheritance
	Polymorphism in Functions
	Polymorphism in MicroPython with Inheritance
	Duck Typing in Python
	Key Benefits of Polymorphism
	Summary

	Modules in Python
	Why Use Modules?
	Using a Module
	Creating Your Own Module
	MicroPython Modules
	Custom MicroPython Module
	Managing Module Imports
	Key Benefits of Using Modules
	Summary

	Using the math Module
	Why Use the math Module?
	Key Features of the math Module
	Mathematical Constants
	Basic Functions
	Trigonometric Functions
	Logarithmic and Exponential Functions
	Other Functions

	Application Example in MicroPython
	Limitations in MicroPython
	Summary

	Handling Exceptions
	What is an Exception?
	Basic Exception Handling Structure
	Common Exceptions in MicroPython on a Pyboard
	File Access Error
	Device Error
	Memory Error

	Raising Custom Exceptions
	Best Practices
	Complete Example
	Conclusion

	Using input()
	What is the input() Function?
	Basic Usage of input()
	Converting User Input
	Using input() for Menu Systems
	Limitations of input() in MicroPython
	Alternatives to input()
	Practical Example: Combining input() and GPIO Control
	Best Practices for Using input()
	Conclusion

	File Manipulation in MicroPython
	The Filesystem in MicroPython
	Opening and Closing Files
	Writing to a File
	Reading from a File
	Appending to a File
	Checking if a File Exists
	Deleting or Renaming Files
	Working with Directories
	Binary File Operations
	Handling File Errors
	Practical Example: Logging Data to a File
	Best Practices for File Manipulation
	Conclusion

